22,103 results match your criteria: "Lithuania; State Research Institute Center for Physical and Technological Sciences[Affiliation]"

Electrospun Chitosan/Polylactic Acid Nanofibers with Silver Nanoparticles: Structure, Antibacterial, and Cytotoxic Properties.

ACS Appl Bio Mater

January 2025

Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania.

Electrospinning, a technique for creating fabric materials from polymer solutions, is widely used in various fields, including biomedicine. The unique properties of electrospun fibrous membranes, such as large surface area, compositional versatility, and customizable porous structure, make them ideal for advanced biomedical applications like tissue engineering and wound healing. By considering the high biocompatibility and well-known regenerative potential of polylactic acid (PLA) and chitosan (CH), as well as the versatile antibacterial effect of silver nanoparticles (AgNPs), this study explores the antibacterial efficacy, adhesive properties, and cytotoxicity of electrospun chitosan membranes with a unique nanofibrous structure and varying concentrations of AgNPs.

View Article and Find Full Text PDF

Childhood obesity poses a significant public health challenge, yet the molecular intricacies underlying its pathobiology remain elusive. Leveraging extensive multi-omics profiling (methylome, miRNome, transcriptome, proteins and metabolites) and a rich phenotypic characterization across two parts of Europe within the population-based Human Early Life Exposome project, we unravel the molecular landscape of childhood obesity and associated metabolic dysfunction. Our integrative analysis uncovers three clusters of children defined by specific multi-omics profiles, one of which characterized not only by higher adiposity but also by a high degree of metabolic complications.

View Article and Find Full Text PDF

Central Eastern European countries (CEEc) are characterized both by huge diversity in income inequality and, on average, by lower levels of well-being than in the other European Union (EU) countries. Given that income inequality may affect well-being negatively, the present study aims to explore the links between income inequalities and different dimensions of well-being in the eight CEEc, i.e.

View Article and Find Full Text PDF

Contamination of wheat by the mycotoxin Deoxynivalenol (DON), produced by Fusarium fungi, poses significant challenges to the quality of crop yield and food safety. Visible and near-infrared (vis-NIR) spectroscopy has emerged as a promising, non-destructive, and efficient tool for detecting mycotoxins in cereal crops and foods. This study aims to utilize vis-NIR spectroscopy, coupled with a feature selection technique and machine learning modelling, to predict and classify DON contamination in wheat kernels and flour.

View Article and Find Full Text PDF

Overweight, obesity, and cardiovascular disease in heterozygous familial hypercholesterolaemia: the EAS FH Studies Collaboration registry.

Eur Heart J

January 2025

Department of Primary Care and Public Health, Imperial Centre for Cardiovascular Disease Prevention, School of Public Health, Imperial College London, White City Campus, 90 Wood Lane, London W12 0BZ, UK.

Background And Aims: Overweight and obesity are modifiable risk factors for atherosclerotic cardiovascular disease (ASCVD) in the general population, but their prevalence in individuals with heterozygous familial hypercholesterolaemia (HeFH) and whether they confer additional risk of ASCVD independent of LDL cholesterol (LDL-C) remains unclear.

Methods: Cross-sectional analysis was conducted in 35 540 patients with HeFH across 50 countries, in the EAS FH Studies Collaboration registry. Prevalence of World Health Organization-defined body mass index categories was investigated in adults (n = 29 265) and children/adolescents (n = 6275); and their association with prevalent ASCVD.

View Article and Find Full Text PDF

Direct cardiac reprogramming or transdifferentiation is a relatively new and promising area in regenerative therapy, cardiovascular disease modeling, and drug discovery. Effective reprogramming of fibroblasts is limited by their plasticity, that is, their ability to reprogram, and depends on solving several levels of tasks: inducing cardiomyocyte-like cells and obtaining functionally and metabolically mature cardiomyocytes. Currently, in addition to the use of more classical approaches such as overexpression of exogenous transcription factors, activation of endogenous cardiac transcription factors via controlled nucleases, such as CRISPR, represents another interesting way to obtain cardiomyocytes.

View Article and Find Full Text PDF

Osteoma is a rare benign tumor primarily affecting the craniofacial skeleton. Coronary osteomas in the coronoid process are uncommon and asymptomatic until they affect mandibular function. This report presents a case of coronoid osteoma with its diagnosis, treatment and surgical approach.

View Article and Find Full Text PDF

The effectiveness and safety of hemodialysis can be hindered by protein accumulation, mechanical instability of membranes and bacterial infection during the dialytic therapy. Herein, we show that cellulose acetate membranes modified with the low-fouling polymers (namely polyvinylpyrrolidone and polyethylene glycol), followed by the in situ reduction of different densities of silver oxide(I) nanoparticles, can effectively address these limitations. These improvements comprise the enhanced resistance to the protein fouling, improved antimicrobial capabilities against S.

View Article and Find Full Text PDF

Background: Zostera marina is an important ecosystem engineer influencing shallow water environments and possibly shaping the microbiota in surrounding sediments and water. Z. marina is typically found in marine systems, but it can also proliferate under brackish conditions.

View Article and Find Full Text PDF

The expansion of single-cell analytical techniques has empowered the exploration of diverse biological questions at the individual cells. Droplet-based single-cell RNA sequencing (scRNA-seq) methods have been particularly widely used due to their high-throughput capabilities and small reaction volumes. While commercial systems have contributed to the widespread adoption of droplet-based scRNA-seq, their relatively high cost limits the ability to profile large numbers of cells and samples.

View Article and Find Full Text PDF

Some calculated total blood count readings are investigated as novel additional readings to help with evaluation of personalized CAD patients' clinical management and prognosis. We aimed to investigate the association between readings such as NLR, MLR, PLR, NMR, LMR, MHR, SII, and SIRI and the severity of CAD in patients with SAP. This retrospective pilot study included 166 patients.

View Article and Find Full Text PDF

Spectral Content Effects Study in Non-Contact Resonance Ultrasound Spectroscopy.

Sensors (Basel)

January 2025

Department of Electronics Engineering, Kaunas University of Technology, 51368 Kaunas, Lithuania.

The application of spread-spectrum signals (arbitrary pulse width and position (APWP) sequences) in air-coupled resonant ultrasound spectroscopy is studied. It was hypothesized that spread-spectrum signal optimization should be based on te signal to noise ratio (SNR). Six APWP signal optimization criteria were proposed for this purpose.

View Article and Find Full Text PDF

The practical implementation of terahertz (THz) imaging and spectroscopic systems in real operational conditions requires them to be of a compact size, to have enhanced functionality, and to be user-friendly. This work demonstrates the single-sided integration of Fresnel-zone-plate-based optical elements with InGaAs bow-tie diodes directly on a semiconductor chip. Numerical simulations were conducted to optimize the Fresnel zone plate's focal length and the InP substrate's thickness to achieve constructive interference at 600 GHz, room-temperature operation and achieve a sensitivity more than an order of magnitude higher-up to 24.

View Article and Find Full Text PDF

Background: Wearable powered exoskeletons could be used to provide robotic-assisted gait training (RAGT) in people with stroke (PwST) and walking disability. The study aims to compare the differences in cardiac function, fatigue, and workload during activities of daily living (ADLs), while wearing an exoskeleton.

Methods: Five PwST were recruited in this pilot cross-sectional study.

View Article and Find Full Text PDF

Terahertz frequency range imaging has become more and more attractive for a wide range of practical applications; however, further component optimization is still required. The presented research introduces 3D-printed high-impact polystyrene (HIPS) beam-shaping components for the terahertz range. Gaussian, Bessel, and Airy beam-shaping structures are fabricated, and different combinations are employed to evaluate imaging system performance.

View Article and Find Full Text PDF

Facial basal cell carcinoma (BCC) is the most common skin cancer, yet delays in diagnosis and treatment persist. These delays affect quality of life (QoL), advance disease progression, and increase healthcare burden. This study explores the relationship between symptom diversity, QoL, and care-seeking behaviors, focusing on the impact of symptoms on clinical outcomes and consultation timing.

View Article and Find Full Text PDF

Due to the high mortality rate of ovarian cancer, there is a need to find novel strategies to improve current treatment modalities. Natural compounds offer great potential in this field but also require the careful design of systems for their delivery to cancer cells. Our study explored the anticancer effects of novel resveratrol (RSV)- and curcumin (CUR)-loaded core-shell nanoparticles in human ovarian cancer cells.

View Article and Find Full Text PDF

This study comprises two distinct but interrelated parts. The first part involves optimizing the conditions for the conversion of phosphogypsum to a Ca(OH) and NaSO solution. The second part focuses on enhancing the mechanical properties of gypsum through the use of a sodium sulphate additive derived from the conversion of phosphogypsum.

View Article and Find Full Text PDF

The experimental and theoretical study of photovoltage formation in perovskite solar cells under pulsed laser excitation at 0.53 μm wavelength is presented. Two types of solar cells were fabricated on the base of cesium-containing triple cation perovskite films: (1) Cs(FAMA)Pb(IBr) and (2) Cs(FAMA)PbSn(IBr).

View Article and Find Full Text PDF

Trees growing in urban areas face increasing stress from atmospheric pollutants, with limited attention given to the early responses of young seedlings. This study aimed to address the knowledge gap regarding the effects of simulated pollutant exposure, specifically particulate matter (PM), elevated ozone (O), and carbon dioxide (CO) concentrations, on young seedlings of five tree species: Scots pine ( L.); Norway spruce ( (L.

View Article and Find Full Text PDF

Modification of Cells with Metal Hexacyanoferrates for the Construction of a Yeast-Based Fuel Cell.

Molecules

January 2025

Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania.

This research presents a simple procedure for chemically modifying yeast () cells with nickel hexacyanoferrate (NiHCF) and ferric hexacyanoferrate, also known as Prussian blue (PB), to increase the conductivity of the yeast cell wall. Using linear sweep voltammetry, NiHCF-modified yeast and PB-modified yeast (NiHCF/yeast and PB/yeast, respectively) were found to have better cell wall conductivity in [Fe(CN)] and glucose-containing phosphate-buffered solution than unmodified yeast. Spectrophotometric analysis showed that the modification of yeast cells with NiHCF had a less harmful effect on yeast cell viability than the modification of yeast cells with PB.

View Article and Find Full Text PDF

This study explores the low-temperature synthesis of graphene using plasma-enhanced chemical vapor deposition (PECVD), emphasizing the optimization of process parameters to achieve controlled growth of pristine and hydrogenated graphene. Graphene films were synthesized at temperatures ranging from 700 °C to as low as 400 °C by varying methane (25-100 sccm) and hydrogen (25-100 sccm) gas flow rates under 10-20 mBar pressures. Raman spectroscopy revealed structural transitions: pristine graphene grown at 700 °C exhibited strong 2D peaks with an I(2D)/I(G) ratio > 2, while hydrogenated graphene synthesized at 500 °C showed increased defect density with an I(D)/I(G) ratio of ~1.

View Article and Find Full Text PDF

Low-color-temperature candlelight organic light-emitting diodes (OLEDs) offer a healthier lighting alternative by minimizing blue light exposure, which is known to disrupt circadian rhythms, suppress melatonin, and potentially harm the retina with prolonged use. In this study, we explore the integration of transition metal dichalcogenides (TMDs), specifically molybdenum disulfide (MoS) and tungsten disulfide (WS), into the hole injection layers (HILs) of OLEDs to enhance their performance. The TMDs, which are known for their superior carrier mobility, optical properties, and 2D layered structure, were doped at levels of 0%, 5%, 10%, and 15% in PEDOT:PSS-based HILs.

View Article and Find Full Text PDF

This study aimed to examine the effects of supplementing a basal diet with resveratrol and black soldier fly () larvae meal on Manchurian Golden quail egg production and quality as well as consumer attitudes towards the quail eggs and their acceptability. Quail were allotted three treatments for a laying period of 3 months. The dietary treatment groups were those of a basal diet, a basal diet with 250 mg/kg resveratrol pliusACE, and a diet supplemented with 10% black soldier fly larvae meal (BSF).

View Article and Find Full Text PDF

Mitochondrial disorder diagnosis and management- what the pediatric neurologist wants to know.

Eur J Paediatr Neurol

December 2024

University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria; Amalia Children's Hospital, Department of Paediatrics, Radboudumc, Nijmegen, the Netherlands. Electronic address:

Childhood-onset mitochondrial disorders are rare genetic diseases that often manifest with neurological impairment due to altered mitochondrial structure or function. To date, pathogenic variants in 373 genes across the nuclear and mitochondrial genomes have been linked to mitochondrial disease, but the ensuing genetic and clinical complexity of these disorders poses considerable challenges to their diagnosis and management. Nevertheless, despite the current lack of curative treatment, recent advances in next generation sequencing and -omics technologies have laid the foundation for precision mitochondrial medicine through enhanced diagnostic accuracy and greater insight into pathomechanisms.

View Article and Find Full Text PDF