134 results match your criteria: "Lilly Biotechnology Center[Affiliation]"

As part of our ongoing efforts to identify novel ligands for the metabotropic glutamate 2 and 3 (mGlu) receptors, we have incorporated substitution at the C3 and C4 positions of the (1S,2R,5R,6R)-2-amino-bicyclo[3.1.0]hexane-2,6-dicarboxylic acid scaffold to generate mGlu antagonists.

View Article and Find Full Text PDF

IgG bispecific antibodies (BsAbs) represent one of the preferred formats for bispecific antibody therapeutics due to their native-like IgG properties and their monovalent binding to each target. Most reported studies utilized transient expression in HEK293 cells to produce BsAbs. However, the expression of biotherapeutic molecules using stable CHO cell lines is commonly used for biopharmaceutical manufacturing.

View Article and Find Full Text PDF

Structural basis of selectivity and neutralizing activity of a TGFα/epiregulin specific antibody.

Protein Sci

November 2016

Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, 46285.

Recent studies have implicated a role of the epidermal growth factor receptor (EGFR) pathway in kidney disease. Skin toxicity associated with therapeutics which completely block the EGFR pathway precludes their use in chronic dosing. Therefore, we developed antibodies which specifically neutralize the EGFR ligands TGFα (transforming growth factor-alpha) and epiregulin but not EGF (epidermal growth factor), amphiregulin, betacellulin, HB-EGF (heparin-binding epidermal growth factor), or epigen.

View Article and Find Full Text PDF

Facile Preparation of Stable Antibody-Gold Conjugates and Application to Affinity-Capture Self-Interaction Nanoparticle Spectroscopy.

Bioconjug Chem

October 2016

Isermann Department of Chemical & Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.

Protein-nanoparticle conjugates are widely used for conventional applications such as immunohistochemistry and biomolecular detection as well as emerging applications such as therapeutics and advanced materials. Nevertheless, it remains challenging to reproducibly prepare stable protein-nanoparticle conjugates with highly similar optical properties. Here we report an improved physisorption method for reproducibly preparing stable antibody-gold conjugates at acidic pH using polyclonal antibodies from a wide range of species (human, goat, rabbit, mouse, and rat).

View Article and Find Full Text PDF

Objectives: To better understand the real-world characteristics and costs of Sjögren's syndrome (SS).

Methods: Analysing the MarketScan Commercial Claims database from Jan. 1, 2006 to Dec.

View Article and Find Full Text PDF

We report the performance of protein-protein docking predictions by our group for recent rounds of the Critical Assessment of Prediction of Interactions (CAPRI), a community-wide assessment of state-of-the-art docking methods. Our prediction procedure uses a protein-protein docking program named LZerD developed in our group. LZerD represents a protein surface with 3D Zernike descriptors (3DZD), which are based on a mathematical series expansion of a 3D function.

View Article and Find Full Text PDF

Here we report on novel, potent 3,3-dimethyl substituted N-aryl piperidine inhibitors of microsomal prostaglandin E synthases-1(mPGES-1). Example 14 potently inhibited PGE2 synthesis in an ex vivo human whole blood (HWB) assay with an IC50 of 7nM. In addition, 14 had no activity in human COX-1 or COX-2 assays at 30μM, and failed to inhibit human mPGES-2 at 62.

View Article and Find Full Text PDF

IgG antibodies are multi-domain proteins with complex inter-domain interactions. Human IgG heavy chains (HCs) associate with light chains (LCs) of the κ or λ isotype to form mature antibodies capable of binding antigen. The HC/LC interaction involves 4 domains: VH and CH1 from the HC and VL and CL from the LC.

View Article and Find Full Text PDF

Interleukin (IL)-17A exists as a homodimer (A/A) or as a heterodimer (A/F) with IL-17F. IL-17A is expressed by a subset of T-cells, called Th17 cells, at inflammatory sites. Most cell types can respond to the local production of IL-17A because of the near ubiquitous expression of IL-17A receptors, IL-17RA and IL-17RC.

View Article and Find Full Text PDF

Outcome of the First wwPDB/CCDC/D3R Ligand Validation Workshop.

Structure

April 2016

Research Collaboratory for Structural Bioinformatics Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.

Crystallographic studies of ligands bound to biological macromolecules (proteins and nucleic acids) represent an important source of information concerning drug-target interactions, providing atomic level insights into the physical chemistry of complex formation between macromolecules and ligands. Of the more than 115,000 entries extant in the Protein Data Bank (PDB) archive, ∼75% include at least one non-polymeric ligand. Ligand geometrical and stereochemical quality, the suitability of ligand models for in silico drug discovery and design, and the goodness-of-fit of ligand models to electron-density maps vary widely across the archive.

View Article and Find Full Text PDF

Computationally Designed Bispecific Antibodies using Negative State Repertoires.

Structure

April 2016

Department of Biochemistry, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Campus Box 7260, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 101 Manning Drive, Chapel Hill, NC 27514, USA. Electronic address:

A challenge in the structure-based design of specificity is modeling the negative states, i.e., the complexes that you do not want to form.

View Article and Find Full Text PDF

N+1 Engineering of an Aspartate Isomerization Hotspot in the Complementarity-Determining Region of a Monoclonal Antibody.

J Pharm Sci

February 2016

Lilly Research Laboratories, Biotechnology Discovery Research, Eli Lilly and Company, Indianapolis, Indiana 46285.

Aspartate (Asp) isomerization is a common degradation pathway and a potential critical quality attribute that needs to be well characterized during the optimization and development of therapeutic antibodies. A putative Asp-serine (Ser) isomerization motif was identified in the complementarity-determining region of a humanized monoclonal antibody and shown to be a developability risk using accelerated stability analyses. To address this issue, we explored different antibody engineering strategies.

View Article and Find Full Text PDF

Therapeutic Antibody Engineering To Improve Viscosity and Phase Separation Guided by Crystal Structure.

Mol Pharm

March 2016

Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company , Indianapolis, Indiana 46285, United States.

Antibodies at high concentrations often reveal unanticipated biophysical properties suboptimal for therapeutic development. The purpose of this work was to explore the use of point mutations based on crystal structure information to improve antibody physical properties such as viscosity and phase separation (LLPS) at high concentrations. An IgG4 monoclonal antibody (Mab4) that exhibited high viscosity and phase separation at high concentration was used as a model system.

View Article and Find Full Text PDF

The INNs and outs of antibody nonproprietary names.

MAbs

September 2016

a Antitope Ltd. (part of Abzena Plc.), Babraham Research Campus , Cambridge CB22 3AT , UK.

An important step in drug development is the assignment of an International Nonproprietary Name (INN) by the World Health Organization (WHO) that provides healthcare professionals with a unique and universally available designated name to identify each pharmaceutical substance. Monoclonal antibody INNs comprise a -mab suffix preceded by a substem indicating the antibody type, e.g.

View Article and Find Full Text PDF

Discovery and Characterization of 2-Acylaminoimidazole Microsomal Prostaglandin E Synthase-1 Inhibitors.

J Med Chem

January 2016

Lilly Research Laboratories, A Division of Eli Lilly and Company , Indianapolis, Indiana 46285, United States.

As part of a program aimed at the discovery of antinociceptive therapy for inflammatory conditions, a screening hit was found to inhibit microsomal prostaglandin E synthase-1 (mPGES-1) with an IC50 of 17.4 μM. Structural information was used to improve enzyme potency by over 1000-fold.

View Article and Find Full Text PDF

Discovery of highly soluble antibodies prior to purification using affinity-capture self-interaction nanoparticle spectroscopy.

Protein Eng Des Sel

October 2015

Isermann Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA

Self-association of monoclonal antibodies (mAbs) at high concentrations can result in developability challenges such as poor solubility, aggregation, opalescence and high viscosity. There is a significant unmet need for methods that can evaluate self-association propensities of concentrated mAbs at the earliest stages in antibody discovery to avoid downstream issues. We have previously developed a method (affinity-capture self-interaction nanoparticle spectroscopy, AC-SINS) that is capable of detecting weak antibody self-interactions using unusually dilute mAb solutions (tens of µg/ml).

View Article and Find Full Text PDF

T cell receptor dwell times control the kinase activity of Zap70.

Nat Immunol

September 2015

Nomis Center for Immunobiology and Microbial Pathogenesis &Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, California, USA.

Kinase recruitment to membrane receptors is essential for signal transduction. However, the underlying regulatory mechanisms are poorly understood. We investigated how conformational changes control T cell receptor (TCR) association and activity of the kinase Zap70.

View Article and Find Full Text PDF

To further elucidate the structural activity correlation of glucocorticoid receptor (GR) antagonism, the crystal structure of the GR ligand-binding domain (GR LBD) complex with a nonsteroidal antagonist, compound 8, was determined. This novel indole sulfonamide shows in vitro activity comparable to known GR antagonists such as mifepristone, and notably, this molecule lowers LDL (-74%) and raises HDL (+73%) in a hamster model of dyslipidemia. This is the first reported crystal structure of the GR LBD bound to a nonsteroidal antagonist, and this article provides additional elements for the design and pharmacology of clinically relevant nonsteroidal GR antagonists that may have greater selectivity and fewer side effects than their steroidal counterparts.

View Article and Find Full Text PDF

Microsomal prostaglandin E synthase 1 (mPGES-1) is an α-helical homotrimeric integral membrane inducible enzyme that catalyzes the formation of prostaglandin E2 (PGE2) from prostaglandin H2 (PGH2). Inhibition of mPGES-1 has been proposed as a therapeutic strategy for the treatment of pain, inflammation, and some cancers. Interest in mPGES-1 inhibition can, in part, be attributed to the potential circumvention of cardiovascular risks associated with anti-inflammatory cyclooxygenase 2 inhibitors (coxibs) by targeting the prostaglandin pathway downstream of PGH2 synthesis and avoiding suppression of antithrombotic prostacyclin production.

View Article and Find Full Text PDF

A myriad of innovative bispecific antibody (BsAb) platforms have been reported. Most require significant protein engineering to be viable from a development and manufacturing perspective. Single-chain variable fragments (scFvs) and diabodies that consist only of antibody variable domains have been used as building blocks for making BsAbs for decades.

View Article and Find Full Text PDF

Several lines of evidence indicate that Glial cell line-derived neurotrophic factor (GDNF) is a trophic factor for dopaminergic neurons. Direct parenchymal administration of GDNF is robustly neuroprotective and neurorestorative in multiple neurotoxin-based animal models (rat and non-human primate (NHP)) of Parkinson's Disease (PD), suggesting its potential as a therapeutic agent. Although small, open-label clinical trials of intra-putamenal administration of bacteria-derived, full length, wild type GDNF (GDNFwt) were efficacious in improving standardized behavioral scores, a double-blinded, randomized controlled trial failed to do so.

View Article and Find Full Text PDF

Immunoglobulins and T cell receptors (TCRs) share common sequences and structures. With the goal of creating novel bispecific antibodies (BsAbs), we generated chimeric molecules, denoted IgG_TCRs, where the Fv regions of several antibodies were fused to the constant domains of the α/β TCR. Replacing CH1 with Cα and CL with Cβ, respectively, was essential for achieving at least partial heavy chain/light chain assembly.

View Article and Find Full Text PDF

Integrative structure-function mapping of the nucleoporin Nup133 suggests a conserved mechanism for membrane anchoring of the nuclear pore complex.

Mol Cell Proteomics

November 2014

From the ‡Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, Byers Hall, 1700 4th Street, Suite 503B, University of California San Francisco, San Francisco, California 94158;

The nuclear pore complex (NPC) is the sole passageway for the transport of macromolecules across the nuclear envelope. Nup133, a major component in the essential Y-shaped Nup84 complex, is a large scaffold protein of the NPC's outer ring structure. Here, we describe an integrative modeling approach that produces atomic models for multiple states of Saccharomyces cerevisiae (Sc) Nup133, based on the crystal structures of the sequence segments and their homologs, including the related Vanderwaltozyma polyspora (Vp) Nup133 residues 55 to 502 (VpNup133(55-502)) determined in this study, small angle X-ray scattering profiles for 18 constructs of ScNup133 and one construct of VpNup133, and 23 negative-stain electron microscopy class averages of ScNup133(2-1157).

View Article and Find Full Text PDF

The rate of protein evolution is determined by a combination of selective pressure on protein function and biophysical constraints on protein folding and structure. Determining the relative contributions of these properties is an unsolved problem in molecular evolution with broad implications for protein engineering and function prediction. As a case study, we examined the structural divergence of the rapidly evolving o-succinylbenzoate synthase (OSBS) family, which catalyzes a step in menaquinone synthesis in diverse microorganisms and plants.

View Article and Find Full Text PDF

Objective: Investigate a role for calcitonin gene-related peptide (CGRP) in osteoarthritis (OA)-related pain.

Design: Neutralizing antibodies to CGRP were generated de novo. One of these antibodies, LY2951742, was characterized in vitro and tested in pre-clinical in vivo models of OA pain.

View Article and Find Full Text PDF