133 results match your criteria: "Lilly Biotechnology Center[Affiliation]"

Photoacoustic imaging reveals mechanisms of rapid-acting insulin formulations dynamics at the injection site.

Mol Metab

August 2022

Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA; Caltech Optical Imaging Laboratory, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA. Electronic address:

Objective: Ultra-rapid insulin formulations control postprandial hyperglycemia; however, inadequate understanding of injection site absorption mechanisms is limiting further advancement. We used photoacoustic imaging to investigate the injection site dynamics of dye-labeled insulin lispro in the Humalog® and Lyumjev® formulations using the murine ear cutaneous model and correlated it with results from unlabeled insulin lispro in pig subcutaneous injection model.

Methods: We employed dual-wavelength optical-resolution photoacoustic microscopy to study the absorption and diffusion of the near-infrared dye-labeled insulin lispro in the Humalog and Lyumjev formulations in mouse ears.

View Article and Find Full Text PDF

Product- and process- related critical quality attributes have the potential to impact pharmacokinetics, immunogenicity, potency, and safety of biotherapeutics. Among these critical quality attributes are chemical degradations, specifically oxidation, deamidation, and isomerization. These degradations can be induced by stressors such as light, pH, or temperature; they can also occur naturally under normal conditions.

View Article and Find Full Text PDF

LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2 variants.

Cell Rep

May 2022

AbCellera Biologics Inc., Vancouver, BC V5Y 0A1, Canada. Electronic address:

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing monoclonal antibodies (mAbs) can reduce the risk of hospitalization from coronavirus disease 2019 (COVID-19) when administered early. However, SARS-CoV-2 variants of concern (VOCs) have negatively affected therapeutic use of some authorized mAbs. Using a high-throughput B cell screening pipeline, we isolated LY-CoV1404 (bebtelovimab), a highly potent SARS-CoV-2 spike glycoprotein receptor binding domain (RBD)-specific antibody.

View Article and Find Full Text PDF

Development of QSAR models for screening of antibody solubility.

MAbs

April 2022

Department of Chemical and Biological Engineering and Center for Biotechnology and interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA.

Although monoclonal antibodies (mAbs) have been shown to be extremely effective in treating a number of diseases, they often suffer from poor developability attributes, such as high viscosity and low solubility at elevated concentrations. Since experimental candidate screening is often materials and labor intensive, there is substantial interest in developing tools for expediting mAb design. Here, we present a strategy using machine learning-based QSAR models for the a priori estimation of mAb solubility.

View Article and Find Full Text PDF

Structural determinants of dual incretin receptor agonism by tirzepatide.

Proc Natl Acad Sci U S A

March 2022

Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285.

SignificanceTirzepatide is a dual agonist of the glucose-dependent insulinotropic polypeptide receptor (GIPR) and the glucagon-like peptide-1 receptor (GLP-1R), which are incretin receptors that regulate carbohydrate metabolism. This investigational agent has proven superior to selective GLP-1R agonists in clinical trials in subjects with type 2 diabetes mellitus. Intriguingly, although tirzepatide closely resembles native GIP in how it activates the GIPR, it differs markedly from GLP-1 in its activation of the GLP-1R, resulting in less agonist-induced receptor desensitization.

View Article and Find Full Text PDF

The human pregnane X receptor (hPXR) regulates the expression of major drug metabolizing enzymes. A wide range of drug candidates bind and activate hPXR, and hence are at risk of increasing drug-drug interactions and reducing clinical efficacy. hPXR structural features that function as hot spots for ligand binding are identified and highlighted in this concise review.

View Article and Find Full Text PDF

While most biological and cellular immunotherapies recognize extracellular targets, T cell receptor (TCR) therapeutics are unique in their ability to recognize the much larger pool of intracellular antigens found on virus-infected or cancerous cells. Recombinant T cell receptor (rTCR)-based therapeutics are gaining momentum both preclinically and clinically highlighted by recent positive phase III human clinical trial results for a TCR/CD3 bifunctional protein in uveal melanoma. Unlike antibody-based T cell engagers whose molecular formats have been widely and extensively evaluated, little data exist describing the putative activities of varied bifunctional formats using rTCRs.

View Article and Find Full Text PDF

Rap1 prevents colitogenic Th17 cell expansion and facilitates Treg cell differentiation and distal TCR signaling.

Commun Biol

March 2022

Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0344, Japan.

T-cell-specific Rap1 deletion causes spontaneous colitis in mice. In the present study, we revealed that Rap1 deficiency in T cells impaired the preceding induction of intestinal RORγt Treg cells. In the large intestinal lamina propria (LILP) of T-cell-specific Rap1-knockout mice (Rap1KO mice), Th17 cells were found to increase in a microbiota-dependent manner, and the inhibition of IL-17A production prevented the development of colitis.

View Article and Find Full Text PDF

Identification of β-Lactams Active against by a Consortium of Pharmaceutical Companies and Academic Institutions.

ACS Infect Dis

March 2022

Global Health Pharma R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain.

Rising antimicrobial resistance challenges our ability to combat bacterial infections. The problem is acute for tuberculosis (TB), the leading cause of death from infection before COVID-19. Here, we developed a framework for multiple pharmaceutical companies to share proprietary information and compounds with multiple laboratories in the academic and government sectors for a broad examination of the ability of β-lactams to kill (Mtb).

View Article and Find Full Text PDF

Objective: Fibroblast-like synoviocytes (FLS) play a pivotal role in rheumatoid arthritis (RA) by contributing to synovial inflammation and progressive joint damage. An imprinted epigenetic state is associated with the FLS aggressive phenotype. We identified CASP8 (encoding for caspase-8) as a differentially marked gene and evaluated its pathogenic role in RA FLSs.

View Article and Find Full Text PDF

Advances in antibody discovery technologies, especially with the availability of humanized mice and phage/yeast library approaches, enable the generation of a large diversity of antibodies against nearly any target of interest. As a result, there is an increasing demand for the production of larger numbers of purified antibodies at quantities (10s-100s of milligrams) sufficient for functional screening assays, drug-ability/develop-ability studies and immunogenicity assessments. To accommodate this need, new methods are required that bridge miniature high throughput/plate-based purification and conventional, one at a time, two-step purification at much larger scales.

View Article and Find Full Text PDF

Impact of IgG subclass on molecular properties of monoclonal antibodies.

MAbs

April 2022

Biotechnology Discovery Research, Lilly Research Laboratories, Lilly Technology Center North, Indianapolis, Indiana, USA.

Immunoglobulin G-based monoclonal antibodies (mAbs) have become a dominant class of biotherapeutics in recent decades. Approved antibodies are mainly of the subclasses IgG1, IgG2, and IgG4, as well as their derivatives. Over the decades, the selection of IgG subclass has frequently been based on the needs of Fc gamma receptor engagement and effector functions for the desired mechanism of action, while the effect on drug product developability has been less thoroughly characterized.

View Article and Find Full Text PDF

The selective Bruton tyrosine kinase (BTK) inhibitor poseltinib has been shown to inhibit the BCR signal transduction pathway and cytokine production in B cells (Park et al. Arthritis Res. Ther.

View Article and Find Full Text PDF

Immunogenicity is one major challenge to the successful development of biotherapeutics because it could adversely affect PK/PD, safety, and efficacy. Preclinical immunogenicity risk assessment strategies and assays have been developed and implemented to screen and optimize discovery molecules. Internalization by antigen presenting cells (APC) and innate immune activation are initial prerequisite steps in eliciting immune responses to biotherapeutics.

View Article and Find Full Text PDF
Article Synopsis
  • CAR T cells are showing great potential as cancer treatments, but their effectiveness is limited by a lack of specific tumor-targeting antigens.
  • Researchers have developed a new CAR that targets the isocitrate dehydrogenase 2 (IDH2) mutation (R140Q) found on cancer cells, combined with a human leukocyte antigen (HLA) called HLA-B*07:02.
  • By optimizing the CAR’s design, this new therapy could improve the ability to target and treat cancers associated with other hard-to-reach mutations.
View Article and Find Full Text PDF

Development of biotherapeutics is hampered by the inherent risk of immunogenicity, which requires extensive clinical assessment and possible re-engineering efforts for mitigation. The focus in the pre-clinical phase is to determine the likelihood of developing treatment-emergent anti-drug antibodies (TE-ADA) and presence of pre-existing ADA in drug-naïve individuals as risk-profiling strategies. Pre-existing ADAs are routinely identified during clinical immunogenicity assessment, but their origin and impact on drug safety and efficacy have not been fully elucidated.

View Article and Find Full Text PDF

Amyloid β oligomers (Aβo) are the main toxic species in Alzheimer's disease, which have been targeted for single drug treatment with very little success. In this work we report a new approach for identifying functional Aβo binding compounds. A tailored library of 971 fluorine containing compounds was selected by a computational method, developed to generate molecular diversity.

View Article and Find Full Text PDF

Discovery and Early Clinical Development of LY3202626, a Low-Dose, CNS-Penetrant BACE Inhibitor.

J Med Chem

June 2021

Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States.

The beta-site APP cleaving enzyme 1, known as BACE1, has been a widely pursued Alzheimer's disease drug target owing to its critical role in the production of amyloid-beta. We have previously reported the clinical development of LY2811376 and LY2886721. LY2811376 advanced to Phase I before development was terminated due to nonclinical retinal toxicity.

View Article and Find Full Text PDF

The Th17 pathway has been implicated in autoimmune diseases. The retinoic acid receptor-related orphan receptor C2 (RORγt) is a master regulator of Th17 cells and controls the expression of IL-17A. RORγt is expressed primarily in IL-17A-producing lymphoid cells.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) poses a public health threat for which preventive and therapeutic agents are urgently needed. Neutralizing antibodies are a key class of therapeutics that may bridge widespread vaccination campaigns and offer a treatment solution in populations less responsive to vaccination. Here, we report that high-throughput microfluidic screening of antigen-specific B cells led to the identification of LY-CoV555 (also known as bamlanivimab), a potent anti-spike neutralizing antibody from a hospitalized, convalescent patient with coronavirus disease 2019 (COVID-19).

View Article and Find Full Text PDF

Since 2015, 170 small molecules, 60 antibody-based entities, 12 peptides, and 15 gene- or cell-therapies have been approved by FDA for diverse disease indications. Recent advancement in medicine is facilitated by identification of new targets and mechanisms of actions, advancement in discovery and development platforms, and the emergence of novel technologies. Early disease detection, precision intervention, and personalized treatments have revolutionized patient care in the last decade.

View Article and Find Full Text PDF

Therapeutic Advances in Oncology.

Int J Mol Sci

February 2021

Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA.

Around 77 new oncology drugs were approved by the FDA in the past five years; however, most cancers remain untreated. Small molecules and antibodies are dominant therapeutic modalities in oncology. Antibody-drug conjugates, bispecific antibodies, peptides, cell, and gene-therapies are emerging to address the unmet patient need.

View Article and Find Full Text PDF

Lipoprotein lipase (LPL) is the key enzyme that hydrolyzes triglycerides from triglyceride-rich lipoproteins. Angiopoietin-like proteins (ANGPTL) 3, 4, and 8 are well-characterized protein inhibitors of LPL. ANGPTL8 forms a complex with ANGPTL3, and the complex is a potent endogenous inhibitor of LPL.

View Article and Find Full Text PDF

Objectives: Heterogeneity of SLE patients in clinical trials remains a challenge for developing new therapies. This study used a combinatorial analysis of four molecular biomarkers to define key sources of heterogeneity.

Methods: Combinations of IFN (high/low), anti-dsDNA (+/-) and C3 and C4 (low/normal) were used to subset n = 1747 patients from two randomized phase III trials.

View Article and Find Full Text PDF

Structure-based, multi-targeted drug discovery approach to eicosanoid inhibition: Dual inhibitors of mPGES-1 and 5-lipoxygenase activating protein (FLAP).

Biochim Biophys Acta Gen Subj

February 2021

Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA. Electronic address:

Background: Due to the importance of both prostaglandins (PGs) and leukotrienes (LTs) as pro-inflammatory mediators, and the potential for eicosanoid shunting in the presence of pathway target inhibitors, we have investigated an approach to inhibiting the formation of both PGs and LTs as part of a multi-targeted drug discovery effort.

Methods: We generated ligand-protein X-ray crystal structures of known inhibitors of microsomal prostaglandin E2 synthase-1 (mPGES-1) and the 5-Lipoxygenase Activating Protein (FLAP), with their respective proteins, to understand the overlapping pharmacophores. We subsequently used molecular modeling and structure-based drug design (SBDD) to identify hybrid structures intended to inhibit both targets.

View Article and Find Full Text PDF