43 results match your criteria: "Light Technology Institute LTI[Affiliation]"

Whether or not methylammonium lead iodide (MAPbI ) is a ferroelectric semiconductor has caused controversy in the literature, fueled by many misunderstandings and imprecise definitions. Correlating recent literature reports and generic crystal properties with the authors' experimental evidence, the authors show that MAPbI thin-films are indeed semiconducting ferroelectrics and exhibit spontaneous polarization upon transition from the cubic high-temperature phase to the tetragonal phase at room temperature. The polarization is predominantly oriented in-plane and is organized in characteristic domains as probed with piezoresponse force microscopy.

View Article and Find Full Text PDF

Sequence-definition in stiff conjugated oligomers.

Sci Rep

November 2018

Laboratory of Applied Chemistry, Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131, Karlsruhe, Germany.

The concept of sequence-definition in the sense of polymer chemistry is introduced to conjugated, rod-like oligo(phenylene ethynylene)s via an iterative synthesis procedure. Specifically, monodisperse sequence-defined trimers and pentamers were prepared via iterative Sonogashira cross-coupling and deprotection. The reaction procedure was extended to tetra- and pentamers for the first time yielding a monodisperse pentamer with 18% and a sequence-defined pentamer with 3.

View Article and Find Full Text PDF

Characterization of the microscopic tribological properties of sandfish () scales by atomic force microscopy.

Beilstein J Nanotechnol

October 2018

Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), H.-v.-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.

Lizards of the genus are widely known under the common name sandfish due to their ability to swim in loose, aeolian sand. Some studies report that this fascinating property of sandfish is accompanied by unique tribological properties of their skin such as ultra-low adhesion, friction and wear. The majority of these reports, however, is based on experiments conducted with a non-standard granular tribometer.

View Article and Find Full Text PDF

An ideal material for photon harvesting must allow control of the exciton diffusion length and directionality. This is necessary in order to guide excitons to a reaction center, where their energy can drive a desired process. To reach this goal both of the following are required; short- and long-range structural order in the material and a detailed understanding of the excitonic transport.

View Article and Find Full Text PDF

Organic chromophores that exhibit aggregation-induced emission (AIE) are of interest for applications in displays, lighting, and sensing, because they can maintain efficient emission at high molecular concentrations in the solid state. Such advantages over conventional chromophores could allow thinner conversion layers of AIE chromophores to be realized, with benefits in terms of the efficiency of the optical outcoupling, thermal management, and response times. However, it is difficult to create large-area optical quality thin films of efficiently performing AIE chromophores.

View Article and Find Full Text PDF

Self-Cleaning Microcavity Array for Photovoltaic Modules.

ACS Appl Mater Interfaces

January 2018

Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.

Development of self-cleaning coatings is of great interest for the photovoltaic (PV) industry, as soiling of the modules can significantly reduce their electrical output and increase operational costs. We fabricated flexible polymeric films with novel disordered microcavity array (MCA) topography from fluorinated ethylene propylene (FEP) by hot embossing. Because of their superhydrophobicity with water contact angles above 150° and roll-off angles below 5°, the films possess self-cleaning properties over a wide range of tilt angles, starting at 10°, and contaminant sizes (30-900 μm).

View Article and Find Full Text PDF

Excitonically Coupled States in Crystalline Coordination Networks.

Chemistry

October 2017

Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz Platz-1, 76344, Eggenstein-Leopoldshafen, Germany.

When chromophores are brought into close proximity, noncovalent interactions (π-π/CH-π) can lead to the formation of excitonically coupled states, which bestow new photophysical properties upon the aggregates. Because the properties of the new states not only depend on the strength of intermolecular interactions, but also on the relative orientation, supramolecular assemblies, where these parameters can be varied in a deliberate fashion, provide novel possibilities for the control of photophysical properties. This work reports that core-substituted naphthalene diimides (cNDIs) can be incorporated into surface-mounted metal- organic structures/frameworks (SURMOFs) to yield optical properties strikingly different from conventional aggregates of such molecules, for example, formed in solution or by crystallization.

View Article and Find Full Text PDF

Many plant surfaces, such as rose petals, display lens-like epidermal cells that are known to assist the collection and focusing of the sunlight. Those cells form an array with a high degree of structural irregularities including disorder in the height and orientation of the cells, and in their arrangement. In this study, we numerically analyze the influence of structural disorder on the optical properties of a 3D modeled epidermal cell array using ray tracing simulations.

View Article and Find Full Text PDF

Bioinspired Superhydrophobic Highly Transmissive Films for Optical Applications.

Small

November 2016

Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.

Inspired by the transparent hair layer on water plants Salvinia and Pistia, superhydrophobic flexible thin films, applicable as transparent coatings for optoelectronic devices, are introduced. Thin polymeric nanofur films are fabricated using a highly scalable hot pulling technique, in which heated sandblasted steel plates are used to create a dense layer of nano- and microhairs surrounding microcavities on a polymer surface. The superhydrophobic nanofur surface exhibits water contact angles of 166 ± 6°, sliding angles below 6°, and is self-cleaning against various contaminants.

View Article and Find Full Text PDF

The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly.

Nat Commun

April 2015

Institute for Microstructure Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.

The glasswing butterfly (Greta oto) has, as its name suggests, transparent wings with remarkable low haze and reflectance over the whole visible spectral range even for large view angles of 80°. This omnidirectional anti-reflection behaviour is caused by small nanopillars covering the transparent regions of its wings. In difference to other anti-reflection coatings found in nature, these pillars are irregularly arranged and feature a random height and width distribution.

View Article and Find Full Text PDF

Organic semiconductor distributed feedback (DFB) lasers are of interest as external or chip-integrated excitation sources in the visible spectral range for miniaturized Raman-on-chip biomolecular detection systems. However, the inherently limited excitation power of such lasers as well as oftentimes low analyte concentrations requires efficient Raman detection schemes. We present an approach using surface-enhanced Raman scattering (SERS) substrates, which has the potential to significantly improve the sensitivity of on-chip Raman detection systems.

View Article and Find Full Text PDF

The integration of organic semiconductor distributed feedback (DFB) laser sources into all-polymer chips is promising for biomedical or chemical analysis. However, the fabrication of DFB corrugations is often expensive and time-consuming. Here, we apply the method of laser-assisted replication using a near-infrared diode laser beam to efficiently fabricate inexpensive poly(methyl methacrylate) (PMMA) chips with spatially localized organic DFB laser pixels.

View Article and Find Full Text PDF

looking inside a working SiLED.

Nano Lett

August 2013

Light Technology Institute (LTI) and DFG Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.

In this study, we investigate for the first time morphological and compositional changes of silicon quantum dot (SiQD) light-emitting diodes (SiLEDs) upon device operation. By means of advanced transmission electron microscopy (TEM) analysis including energy filtered TEM (EFTEM) and energy dispersive X-ray (EDX) spectroscopy, we observe drastic morphological changes and degradation for SiLEDs operated under high applied voltage ultimately leading to device failure. However, SiLEDs built from size-separated SiQDs operating under normal conditions show no morphological and compositional changes and the biexponential loss in electroluminescence seems to be correlated to chemical and physical degradation of the SiQDs.

View Article and Find Full Text PDF

We experimentally determine the order of multiphoton induced luminescence of aluminum nanoantennas fabricated on a nonconductive substrate using electron-beam lithography to be 2.11 (±0.10).

View Article and Find Full Text PDF

Fabrication of small nanoantennas with high aspect ratios via electron beam lithography is at the current technical limit of nanofabrication and hence significant deviations from the intended shape of small nanobars occur. Via numerical simulations, we investigate the influence of geometrical variations of gap nanoantennas, having dimensions on the order of only a few tens of nanometers. We show that those deviations have a significant influence on the performance of such nanoantennas.

View Article and Find Full Text PDF

Multicolor silicon light-emitting diodes (SiLEDs).

Nano Lett

February 2013

Light Technology Institute (LTI) and DFG Center for Functional Nanostructures, Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany.

We present highly efficient electroluminescent devices using size-separated silicon nanocrystals (ncSi) as light emitting material. The emission color can be tuned from the deep red down to the yellow-orange spectral region by using very monodisperse size-separated nanoparticles. High external quantum efficiencies up to 1.

View Article and Find Full Text PDF

The fabrication and characterization of continuously tunable, solution-processed distributed feedback (DFB) lasers in the visible regime is reported. Continuous thin film thickness gradients were achieved by means of horizontal dipping of several conjugated polymer and blended small molecule solutions on cm-scale surface gratings of different periods. We report optically pumped continuously tunable laser emission of 13 nm in the blue, 16 nm in the green and 19 nm in the red spectral region on a single chip respectively.

View Article and Find Full Text PDF

Intermediate high index layer for laser mode tuning in organic semiconductor lasers.

Opt Express

March 2010

Light Technology Institute (LTI) and Center for Functional Nanostructures (CFN), Universität Karlsruhe (TH),Kaiserstr. 12, 76131 Karlsruhe, Germany.

We modified the optical properties of organic semiconductor distributed feedback lasers by introducing a high refractive index layer consisting of tantalum pentoxide between the substrate and the active material layer. A thin film of tris-(8-hydroxyquinoline) aluminium doped with the laser dye 4-dicyanomethylene-2-methyl-6-(p-dimethylamino-styryl)-4H-pyran was used as the active layer. By varying the intermediate layer thickness we could change the effective refractive index of the guided laser mode and thus the laser wavelength.

View Article and Find Full Text PDF