5 results match your criteria: "Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health[Affiliation]"

Chemosensory cells across the body of Drosophila melanogaster evaluate the environment to prioritize certain behaviors. Previous mapping of gustatory receptor neurons (GRNs) on the fly labellum identified a set of neurons in L-type sensilla that express Ionotropic Receptor 94e (IR94e), but the impact of IR94e GRNs on behavior remains unclear. We used optogenetics and chemogenetics to activate IR94e neurons and found that they drive mild feeding suppression but enhance egg laying.

View Article and Find Full Text PDF

Activity-dependent post-translational regulation of palmitoylating and depalmitoylating enzymes in the hippocampus.

J Cell Sci

April 2023

Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.

Activity-induced changes in protein palmitoylation can regulate the plasticity of synaptic connections, critically impacting learning and memory. Palmitoylation is a reversible post-translational modification regulated by both palmitoyl-acyl transferases that mediate palmitoylation and palmitoyl thioesterases that depalmitoylate proteins. However, it is not clear how fluctuations in synaptic activity can mediate the dynamic palmitoylation of neuronal proteins.

View Article and Find Full Text PDF

The reversible lipid modification protein S-palmitoylation can dynamically modify the localization, diffusion, function, conformation and physical interactions of substrate proteins. Dysregulated S-palmitoylation is associated with a multitude of human diseases including brain and metabolic disorders, viral infection and cancer. However, the diverse expression patterns of the genes that regulate palmitoylation in the broad range of human cell types are currently unexplored, and their expression in commonly used cell lines that are the workhorse of basic and preclinical research are often overlooked when studying palmitoylation dependent processes.

View Article and Find Full Text PDF

Synaptic activity-dependent changes in the hippocampal palmitoylome.

Sci Signal

December 2022

Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.

Dynamic protein S-palmitoylation is critical for neuronal function, development, and synaptic plasticity. Synaptic activity-dependent changes in palmitoylation have been reported for a small number of proteins. Here, we characterized the palmitoylome in the hippocampi of male mice before and after context-dependent fear conditioning.

View Article and Find Full Text PDF

Protein -palmitoylation is a reversible post-translational lipid modification that plays a critical role in neuronal development and plasticity, while dysregulated -palmitoylation underlies a number of severe neurological disorders. Dynamic -palmitoylation is regulated by a large family of ZDHHC palmitoylating enzymes, their accessory proteins, and a small number of known de-palmitoylating enzymes. Here, we curated and analyzed expression data for the proteins that regulate -palmitoylation from publicly available RNAseq datasets, providing a comprehensive overview of their distribution in the mouse nervous system.

View Article and Find Full Text PDF