29 results match your criteria: "Life Science and Environmental Research Institute[Affiliation]"

Patterning-mediated supramolecular assembly of lipids into nanopalms.

iScience

November 2022

National Center for Biotechnology, Life science and Environmental Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11461, Saudi Arabia.

At nanoconfined interfaces, a micellar ink of lipids was programmed to transform into various secondary structures such as discs, sheets, or sheet and discs via patterning-mediated self-assembly facilitated by polymer pen lithography. Nanoconfinement with printing force, humidity, temperature, pattern size, and total printing time all governed the intramolecular assembly of lipids and determined their structural shape and size. For example, disc or sheet architectures self-organized to produce cochleates or discotic liquid crystals, respectively.

View Article and Find Full Text PDF

Oxidative chemical etching of metal nanoparticles (NPs) to produce holey graphene (hG) suffers from the presence of aggregated NPs on the graphene surface triggering heterogeneous etching rates and thereby producing irregular sized holes. To encounter such a challenge, we investigated the use of scanning probe block co-polymer lithography (SPBCL) to fabricate precisely positioned silver nanoparticles (AgNPs) on graphene surfaces with exquisite control over the NP size to prevent their aggregation and consequently produce uniformly distributed holes after oxidative chemical etching. SPBCL experiments were carried out printing an ink suspension consisting of poly(ethylene oxide--2-vinylpyridine) and silver nitrate on a graphene surface in a selected pattern under controlled environmental and instrumental parameters followed by thermal annealing in a gaseous environment to fabricate AgNPs.

View Article and Find Full Text PDF

One of the key challenges in developing a dry powder inhaler (DPI) of an inhalable potent fixed-dose combination (FDC) is the ability of the formulation to generate an effective and reproducible aerosol able to reach the lower parts of the lungs. Herein, a one-step approach is presented to expedite the synthesis of nanoaggregates made from a biocompatible and biodegradable polyamide based on L-lysine amino acid employing market-leading active pharmaceutical ingredients (fluticasone propionate (FP) and salmeterol xinafoate (SAL)) for the management of asthma. The nanoaggregates were synthesized using interfacial polycondensation that produced nanocapsules with an average particle size of 226.

View Article and Find Full Text PDF
Article Synopsis
  • SARS-CoV-2, originating in Wuhan, has led to over 906,000 deaths and nearly 28 million cases globally, creating an urgent demand for effective treatments in the absence of a specific vaccine.
  • The study focuses on molecular docking analysis of TAT-peptide-conjugated repurposed drugs (like lopinavir and hydroxychloroquine) to assess their efficacy against SARS-CoV-2's main protease (3CL).
  • Results indicate that these TAT-peptide-conjugated drugs significantly enhance interactions with the target protease, suggesting they could be a promising approach for developing new COVID-19 treatments and informing future clinical trials.
View Article and Find Full Text PDF

Zinc oxide nanoparticles have become one of the most popular metal oxide nanoparticles and recently emerged as a promising potential candidate in the fields of optical, electrical, food packaging, and biomedical applications due to their biocompatibility, low toxicity, and low cost. They have a role in cell apoptosis, as they trigger excessive reactive oxygen species (ROS) formation and release zinc ions (Zn) that induce cell death. The zinc oxide nanoparticles synthesized using the plant extracts appear to be simple, safer, sustainable, and more environmentally friendly compared to the physical and chemical routes.

View Article and Find Full Text PDF

Purpose: 4-Hydroxyisophthalic acid (4-HIA) is a bioactive compound present in the roots of , which has attracted considerable attention in attenuating oxidative stress-related neurodegenerative diseases. However, its efficacy is limited because of its low solubility and bioavailability. Therefore, the present study aimed to encapsulate 4-HIA using biocompatible copolymer polylactide-co-glycolide (PLGA) and evaluate its antioxidant and neuroprotective potential.

View Article and Find Full Text PDF

Oncolytic Herpes Simplex Virus-Based Therapies for Cancer.

Cells

June 2021

Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11451, Saudi Arabia.

With the increased worldwide burden of cancer, including aggressive and resistant cancers, oncolytic virotherapy has emerged as a viable therapeutic option. Oncolytic herpes simplex virus (oHSV) can be genetically engineered to target cancer cells while sparing normal cells. This leads to the direct killing of cancer cells and the activation of the host immunity to recognize and attack the tumor.

View Article and Find Full Text PDF

Bioprospecting of Rhizosphere-Resident Fungi: Their Role and Importance in Sustainable Agriculture.

J Fungi (Basel)

April 2021

Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India.

Rhizosphere-resident fungi that are helpful to plants are generally termed as 'plant growth promoting fungi' (PGPF). These fungi are one of the chief sources of the biotic inducers known to give their host plants numerous advantages, and they play a vital role in sustainable agriculture. Today's biggest challenge is to satisfy the rising demand for crop protection and crop yield without harming the natural ecosystem.

View Article and Find Full Text PDF

Catalogue of self-targeting nano-medical inventions to accelerate clinical trials.

Biomater Sci

June 2021

National Center for Pharmaceutical Technology, Life science and Environmental Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11461, Saudi Arabia. and KACST-BWH/Harvard Centre of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11461, Saudi Arabia and College of Science and General Studies, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia.

Repetitive outbreaks and prolonged epidemics represent mortal threats to global health, creating chaos in our globalized world. To date, scientists have been compelled to follow FDA guidelines for conventional clinical trials, which decelerates the release of effective therapies to battle outbreaks and safeguard global health security. Developing multi-purpose platform nanotechnologies to self-target specific organs in response to the disease microenvironment could greatly help to rapidly anticipate and efficiently manage outbreaks.

View Article and Find Full Text PDF

Biofabricated Fatty Acids-Capped Silver Nanoparticles as Potential Antibacterial, Antifungal, Antibiofilm and Anticancer Agents.

Pharmaceuticals (Basel)

February 2021

Department of Stem Cell Biology, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia.

The current study demonstrates the synthesis of fatty acids (FAs) capped silver nanoparticles (AgNPs) using aqueous poly-herbal drug Liv52 extract (PLE) as a reducing, dispersing and stabilizing agent. The NPs were characterized by various techniques and used to investigate their potent antibacterial, antibiofilm, antifungal and anticancer activities. GC-MS analysis of PLE shows a total of 37 peaks for a variety of bio-actives compounds.

View Article and Find Full Text PDF

The study was undertaken to investigate the antioxidant, genotoxic, and cytotoxic potentialities of phyto-fabricated zinc oxide nanoparticles (ZnO-NPs) from (L.) Ker Gawl. aqueous leaf extract.

View Article and Find Full Text PDF

Biofunctionalized TiO nanoparticles with a size range of 18.42±1.3 nm were synthesized in a single-step approach employing Grape seed extract (GSE) proanthocyanin (PAC) polyphenols.

View Article and Find Full Text PDF

The blowfly Chrysomya albiceps (Diptera: Calliphoridae) has been known to breed in both animal and human carcasses in different geographical regions and is considered an important post-mortem indicator in forensic entomology. Determining the age of its larvae is an essential tool for the accurate determination of post-mortem intervals (PMI). This study adopted a molecular-based approach for age determination of the immature stages of the blowfly, C.

View Article and Find Full Text PDF

Chrysomya albiceps (Wiedemann 1819) is one of the most important insects in forensic entomology. Its larval developmental and survival rates are influenced by nutritional resources, temperature, humidity, and geographical regions. The present study investigated the possibility of relying on body size and cuticular hydrocarbon composition as indicators for age estimation of the different larval instars of C.

View Article and Find Full Text PDF

Forensic entomology focuses on the analysis of insect larvae present at crime scenes to help identify unknown cadavers. Carrion-feeding maggots store food in a crop located at the anterior end of the gut. DNA recovered from the crop can be amplified, sequenced, and identified to determine the origin of the food.

View Article and Find Full Text PDF

Present study, report the biofabrication of zinc oxide nanoparticles from aqueous leaf extract of (MaZnO-NPs) through solution combustion method and their novel application in preventing the growth of seed-borne fungal pathogens of soybean ( and ). The standard blotter method was employed to isolate fungi and was identified through molecular techniques. The characterization of MaZnO-NPs was carried out by UV-Vis spectroscopy, Fourier Transform Infrared Spectroscopy (FT-IR), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) equipped with Energy Dispersive Spectroscopy (EDS) and Transmission Electron Microscopy (TEM).

View Article and Find Full Text PDF

Tumoricidal and Bactericidal Properties of ZnONPs Synthesized Using Leaf Extract.

Biomolecules

June 2020

Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka-570 015, India.

In this work, we aimed to synthesize zinc oxide nanoparticles (ZnONPs) using an aqueous extract of leaves (CAE) at room temperature without the provision of additional surfactants or capping agents. The formation of as-obtained ZnONPs was analyzed by UV-visible (ultraviolet) absorption and emission spectroscopy, X-ray photoemission spectroscopy (XPS), X-ray diffraction analysis (XRD), energy dispersive X-ray diffraction (EDX), thermogravimetric analysis/differential thermal analysis (TGA-DTA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED). The XRD results reflect the wurtzite structure of as-prepared ZnONPs, which produced diffraction patterns showing hexagonal phases.

View Article and Find Full Text PDF

Tree species (including Eucalyptus camaldulensis, Ziziphus spina-christi, Albizia lebbeck, Prosopis juliflora, Pithecellobium dulce, and Ficus altissima) were investigated to elucidate their appropriates for green belt application. Leaf samples were collected from four different locations in Riyadh: (1) residential; (2) dense traffic; (3) industrial; and (4) reference sites located approximately 20 km away from the city of Riyadh. Leaves collected from the industrial site showed the highest leaf area reduction.

View Article and Find Full Text PDF

Effect of Biosynthesized ZnO Nanoparticles on Multi-Drug Resistant Pseudomonas Aeruginosa.

Antibiotics (Basel)

May 2020

Department of Microbiology, Nanotechnology and Antimicrobial Drug Resistance Research Laboratory, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.

Synthesis of nanoparticles using the plants has several advantages over other methods due to the environmentally friendly nature of plants. Besides being environmentally friendly, the synthesis of nanoparticles using plants or parts of the plants is also cost effective. The present study focuses on the biosynthesis of zinc oxide nanoparticles (ZnO NPs) using the seed extract of and their effect on to the quorum-mediated virulence factors of multidrug-resistant clinical isolates of at sub minimum inhibitory concentration (MIC).

View Article and Find Full Text PDF

Plant-based synthesis of eco-friendly nanoparticles has widespread applications in many fields, including medicine. Biofilm-a shield for pathogenic microorganisms-once formed, is difficult to destroy with antibiotics, making the pathogen resistant. Here, we synthesized gold nanoparticles (AuNPs) using the stem of an Ayurvedic medicinal plant, , and studied the action of AuNPs against PAO1 biofilm.

View Article and Find Full Text PDF

plant extract mediated propellant chemistry route was used for the green synthesis of zinc oxide nanoparticles. Prepared samples were confirmed for their nano regime using advanced characterization techniques such as powder X-ray diffraction and microscopic techniques such as scanning electron microscopy and transmission electron microscopy. The energy band gap of the green synthesized zinc oxide (ZnO)-nanoparticles (NPs) were found between 3.

View Article and Find Full Text PDF

Nanoparticles (NPs) are unique may be organic or inorganic, play a vital role in the development of drug delivery targeting the central nervous system (CNS). Intranasal drug delivery has shown to be an efficient strategy with attractive application for drug delivery to the CNS related diseases, such as Parkinson's disease, Alzheimer 's disease and brain solid tumors. Blood brain barrier (BBB) and blood-cerebrospinal fluid barriers are natural protective hindrances for entry of drug molecules into the CNS.

View Article and Find Full Text PDF

In the recent scenario, nanotechnology-based therapeutics intervention has gained tremendous impetus all across the globe. Nano-based pharmacological intervention of various bioactive compounds has been explored on an increasing scale. Sesquiterpenes are major constituents of essential oils (EOs) present in various plant species which possess intriguing therapeutic potentials.

View Article and Find Full Text PDF

Nanotechnology, in silico and endocrine-based strategy for delivering paclitaxel and miRNA: Prospects for the therapeutic management of breast cancer.

Semin Cancer Biol

February 2021

Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia; Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia.

Breast cancer is one of the most prevalent and reoccurring cancers and the second most common reason of death in women. Despite advancements in therapeutic strategies for breast cancer, early tumor recurrence and metastasis in patients indicate resistance to chemotherapeutic medicines, such as paclitaxel due to the abnormal expression of ER and EGF2 in breast cancer cells. Therefore, the development of alternatives to paclitaxel is urgently needed to overcome challenges involving drug resistance.

View Article and Find Full Text PDF