2,577 results match your criteria: "Liaoning Province PR China; China Medical University Center of Forensic Investigation[Affiliation]"

Photocatalytic technology for removing organic dye pollutants has gained considerable attention because of its ability to harness abundant solar energy without requiring additional chemical reagents. In this context, YF spheres doped with Yb, Er, Tm (YF) are synthesized using a hydrothermal method and are subsequently coated with a layer of graphitic carbon nitride (g-CN) with Au nanoparticles (NPs) adsorbed onto the surface to create a core-shell structure, designated as YF: Yb, Er, Tm@CN-Au (abbreviated as YF@CN-Au). The core-shell composites demonstrate remarkable stability, broadband absorption, and exceptional photocatalytic activity across the ultraviolet (UV) to near-infrared (NIR) spectral range.

View Article and Find Full Text PDF

Bioaccumulation of novel brominated flame retardants in a marine food web: A comprehensive analysis of occurrence, trophic transfer, and interfering factors.

Sci Total Environ

January 2025

International Joint Research Centre for Persistent Toxic Substances (IJRC-PTS), College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, PR China. Electronic address:

Although the concept of bioaccumulation for novel brominated flame retardants (NBFRs) is clear, the process and interfering factors of bioaccumulation are still not fully understood. The present study comprehensively evaluated the occurrence, transfer and interfering factors of NBFRs in a marine food web to provide new thought and perspective for the bioaccumulation of these compounds. The occurrence of 17 NBFRs were determined from 8 water, 8 sediment and 303 organism samples collected from Dalian Bay, China.

View Article and Find Full Text PDF

In this study, the zirconium-based metal organic framework (Zr-MOF) was applied as the adsorbent for phosphorus (P) pollution in water. Then the phosphate-adsorbed metal organic frameworks (MOFs) were used as a recycled raw material and calcined to obtain P-doped MOFs-derived carbon material (ZrP@Zr-BTC). Next, the ZrP@Zr-BTC was used for peroxymonosulfate (PMS) activation for the ceftriaxone sodium degradation.

View Article and Find Full Text PDF

Cohort-based nomogram for forensic prediction of SCD: a single-center pilot study.

Forensic Sci Med Pathol

January 2025

Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, 110122, P. R. China.

Forensic diagnosis of sudden cardiac death (SCD) is an extremely important part of routine forensic practice. The present study aimed to develop and validate nomograms for predicting the probability of SCD with special regards to ischemic heart disease-induced SCD (IHD-induced SCD) based on multiple autopsy variables. A total of 3322 cases, were enrolled and randomly assigned into a training cohort (n = 2325) and a validation cohort (n = 997), respectively.

View Article and Find Full Text PDF

Impact of cancer-related fatigue on quality of life in patients with cancer: multiple mediating roles of psychological coherence and stigma.

BMC Cancer

January 2025

School of Nursing, Jinzhou Medical University, No.40, Section 3, Songpo Road, Linghe District, Jinzhou City, Liaoning Province, P.R. China.

Objective: The goal of this current research was to explore the impact of cancer-related fatigue on the quality of life among patients with cancer, as well as the multiple mediating roles of psychological coherence and stigma.

Methods: This study utilized a cross-sectional design. A questionnaire was administered between November 2022 and May 2023 to 364 patients with cancer in two tertiary hospitals in Jinzhou City, Liaoning Province, China.

View Article and Find Full Text PDF

Targeting Shp2 as a therapeutic strategy for neurodegenerative diseases.

Transl Psychiatry

January 2025

Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, PR China.

The incidence of neurodegenerative diseases (NDs) has increased recently. However, most of the current governance strategies are palliative and lack effective therapeutic drugs. Therefore, elucidating the pathological mechanism of NDs is the key to the development of targeted drugs.

View Article and Find Full Text PDF

Metabolic activation and hepatic cytotoxicity of osthole mediated by cytochrome P450 enzymes.

Toxicol Lett

January 2025

Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China; State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou 550025, PR China; Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China. Electronic address:

Osthole (OST), a coumarin derivative, is one of the major components of Cnidium monnieri (L.) Cussion. OST was reported to induce apoptosis in hepatocytes.

View Article and Find Full Text PDF

TiCT MXene Composite with Much Improved Stability for Superior Humidity Sensors.

Langmuir

January 2025

Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P.R. China.

MXenes have attracted tremendous attention in electromagnetic interference shielding, energy storage, and gas and humidity detections because of their ultralarge surface area and abundant functional groups. However, their poor stability against hydration and oxidation makes them challenging for long-term storage and applications. Herein, we proposed and demonstrated a TiCT MXene composite-based humidity sensor, of which the stability is pronouncedly enhanced by introducing an O adsorption competitor of extracted bentonite (EB).

View Article and Find Full Text PDF

Determination of the Minimum Uncut Chip Thickness of Ti-6Al-4V Titanium Alloy Based on Dead Metal Zone.

Micromachines (Basel)

November 2024

Key Laboratory of Rapid Development & Manufacturing Technology for Aircraft, Shenyang Aerospace University, Ministry of Education, Shenyang 110136, China.

In Ti-6Al-4V titanium alloy micro-machining, since the uncut chip thickness (UCT) is comparable to the radius of the tool cutting edge, there exists a minimum uncut chip thickness (MUCT), and when the UCT is smaller than the MUCT, the plowing effect dominates the cutting process, which seriously affects the machined surface quality and tool life. Therefore, the reliable prediction of the MUCT is of great significance. This paper used Deform to establish an orthogonal cutting simulation model, studied the effect of the dead metal zone (DMZ) on the micro-cutting material flow, determined the DMZ range, and proposed a new method for determining the MUCT based on the DMZ.

View Article and Find Full Text PDF

Habitat-based MRI radiomics to predict the origin of brain metastasis.

Med Phys

January 2025

Department of Scientific Research and Academic, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, P. R. China.

Background: This study aims to explore the value of habitat-based magnetic resonance imaging (MRI) radiomics for predicting the origin of brain metastasis (BM).

Purpose: To investigate whether habitat-based radiomics can identify the metastatic tumor type of BM and whether an imaging-based model that integrates the volume of peritumoral edema (VPE) can enhance predictive performance.

Methods: A primary cohort was developed with 384 patients from two centers, which comprises 734 BM lesions.

View Article and Find Full Text PDF

Mechanism and catalytic activity of the water-gas shift reaction on a single-atom alloy Al/Cu (111) surface.

Nanoscale

January 2025

School of Chemistry, Dalian University of Technology, No.2 Linggong Road, Dalian City, Liaoning Province, 116024, P. R. China.

The mechanism and activity of the water-gas shift reaction (WGSR) on single-atom alloy Al/Cu (111) and Cu (111) surfaces were studied using GGA-PBE-D3. Al/Cu (111) exhibited bifunctional active sites, with the Al site being positively charged and the Cu site negatively charged due to electronic interactions. This led to selective adsorption of HO and CO.

View Article and Find Full Text PDF

A machine learning-based model to predict POD24 in follicular lymphoma: a study by the Chinese workshop on follicular lymphoma.

Biomark Res

January 2025

Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, P.R. China.

Background: Disease progression within 24 months (POD24) significantly impacts overall survival (OS) in patients with follicular lymphoma (FL). This study aimed to develop a robust predictive model, FLIPI-C, using a machine learning approach to identify FL patients at high risk of POD24.

Methods: A cohort of 1,938 FL patients (FL1-3a) from seventeen centers nationwide in China was randomly divided into training and internal validation sets (2:1 ratio).

View Article and Find Full Text PDF

In this study, we identified cancer-associated fibroblast (CAF) molecular subtypes and developed a CAF-based prognostic model for breast cancer (BRCA). The heterogeneity of cancer-associated fibroblasts (CAFs) and their significant involvement in the advancement of BRCA were discovered employing single-cell RNA sequencing. Notably, we discovered that the RUNX1/SDC1 axis enhances BRCA cell invasion and metastasis.

View Article and Find Full Text PDF

A novel dual-mode detection method for microRNA-21 was developed. Photoluminescent (PL) and multiphonon resonant Raman scattering (MRRS) techniques were combined by using ZnTe nanoparticles as signal probes for reliable detection. The catalytic hairpin assembly (CHA) strategy was integrated with superparamagnetic FeO nanoparticle clusters (NCs) to enhance sensitivity.

View Article and Find Full Text PDF

Toxicity Risk Assessment of Clethodim Enantiomers in Rats and Mice: Insights from Stereoselective Effects.

J Agric Food Chem

January 2025

School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China.

Clethodim is a chiral herbicide with two enantiomers. The herbicidal activity of (-)-clethodim is 1.3-2.

View Article and Find Full Text PDF

Photocatalytic conversion of CO and HO into high-value-added C2 fuels remains a tough challenge, mainly due to the insufficient concentration of photogenerated electrons for the instability of C1 intermediates, which often tend to desorb easily and disable to form C─C bonds. In this work, photoreduction of CO-to-CH is successfully achieved by introducing adjacent C, N dual-vacancy sites within the heptazine rings of ultrathin g-CN, which results in the opening of two neighboring heptazine rings and forms a distinctive dipole-limited domain field (DLDF) structure. In situ X-ray photoelectron spectra and in situ fourier transform infrared spectra provide direct evidence of the rapid accumulation and transformation of C1 intermediates, especially CO and CHO, within the DLDF.

View Article and Find Full Text PDF

An Intermediate-Aided Perovskite Phase Purification for High-Performance Solar Cells.

J Am Chem Soc

January 2025

Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China.

In recent years, perovskite solar cells (PSCs) have garnered considerable attention as a prime candidate for next-generation photovoltaic technology. Ensuring the structural stability of perovskites is crucial to the operational reliability of these devices. However, the nonphotoactive yellow phase (δ-FAPbI) of formamidine (FA)-based perovskites is more favorable in thermodynamics, making it challenging to achieve pure α phase in crystallization.

View Article and Find Full Text PDF

The addition of a redox mediator as soluble catalyst into electrolyte can effectively overcome the bottlenecks of poor energy efficiency and limited cyclability for Li-O batteries caused by passivation of insulating discharge products and unfavorable byproducts. Herein we report a novel soluble catalyst of bifunctional imidazolyl iodide salt additive, 1,3-dimethylimidazolium iodide (DMII), to successfully construct highly efficient and durable Li-O batteries. The anion I can effectively promote the charge transport of LiO and accelerate the redox kinetics of oxygen reduction/oxygen evolution reactions on the cathode side, thereby significantly decreasing the charge/discharge overpotential.

View Article and Find Full Text PDF

Tailoring Acid-Salt Hybrid Electrolyte Structure for Stable Proton Storage at Ultralow Temperature.

Adv Mater

December 2024

Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.

The critical challenges in developing ultralow-temperature proton-based energy storage systems are enhancing the diffusion kinetics of charge carriers and inhibiting water-triggered interfacial side reactions between electrolytes and electrodes. Here an acid-salt hybrid electrolyte with a stable anion-cation-HO solvation structure that realizes unconventional proton transport at ultralow temperature is shown, which is crucial for electrodes and devices to achieve high rate-capacity and stable interface compatibility with electrodes. Through multiscale simulations and experimental investigations in the electrolyte employing ZnCl introduced into 0.

View Article and Find Full Text PDF

Identification of the arachidonic acid 5-lipoxygenase and its function in the immunity of Apostichopus japonicus.

Fish Shellfish Immunol

February 2025

Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, PR China; Dalian Jinshiwan Laboratory, Dalian, PR China. Electronic address:

A number of studies have been demonstrated that arachidonate 5-lipoxygenase (ALOX-5) plays a role in regulating a range of physiological and pathological processes through the catalysis of leukotriene formation from arachidonic acid (ARA). The coding sequence of ALOX-5 from Apostichopus japonicus (Aj-ALOX-5) was successfully amplified, resulting in a 2028 bp ORF sequence that encodes 674 amino acids. A comparison of the amino acid sequence with those of other 5-lipoxygenases revealed that Aj-ALOX-5 has the N-terminal "PLAT domain" and C-terminal "lipoxygenase structural domain" characteristic of this enzyme family.

View Article and Find Full Text PDF

Background: Neuroendocrine tumors primarily consist of endocrine cells commonly located in neural tissue and the endocrine system. Primary neuroendocrine neoplasms of the breast are highly heterogeneous tumors characterized by a diverse cell population. Their rarity in the breast poses considerable challenges in studying their pathogenesis and developing effective treatments.

View Article and Find Full Text PDF

Since its introduction, robotic surgery has experienced rapid development and has been extensively implemented across various medical disciplines. It is crucial to comprehend the advancements in research and the evolutionary trajectory of its thematic priorities. This research conducted a bibliometric analysis on the literature pertaining to robotic surgery, spanning the period from 2014 to 2023, sourced from the Web of Science database.

View Article and Find Full Text PDF

Successive Reactions of Trimethylgermanium Chloride to Achieve > 26% Efficiency MA-Free Perovskite Solar Cell With 3000-Hour Unattenuated Operation.

Adv Mater

December 2024

Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.

The rapidly increased efficiency of perovskite solar cells (PSCs) indicates their broad commercial prospects, but the commercialization of perovskite faces complex optimization processes and stability issues. In this work, a simple optimized strategy is developed by the addition of trimethylgermanium chloride (TGC) into FACsPbI precursor solution. TGC triggers the successive interactions in perovskite solution and film, involving the hydrolysis of vulnerable Ge─Cl bond forming Ge─OH group, then forming the hydrogen bonds (O─H···N and O─H···I) with FAI.

View Article and Find Full Text PDF

Advanced characterization of fish skin gelatin-proanthocyanidins covalent and non-covalent composite emulsions for benzyl isothiocyanate delivery.

Int J Biol Macromol

December 2024

SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, PR China; National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; Engineering Research Center of Special Dietary Food, the Education Department of Liaoning Province, Dalian 116034, PR China. Electronic address:

This research endeavored to engineer robust delivery matrices for bioactives, specifically benzyl isothiocyanate (BITC), by harnessing the synergistic covalent and non-covalent interactions between fish skin gelatin (FSG) and proanthocyanidins (PC) to synthesize novel composite emulsions. The objective was to delineate the influence of these molecular interactions on the emulsion's structural integrity and stability, which are pivotal for the efficacious encapsulation and controlled release of BITC. Employing a suite of analytical techniques, including Fourier transform infrared spectroscopy (FTIR), fluorescence spectroscopy, and contact angle measurements, the study delineated the predominant molecular forces at play within the FSG-PC complex, identifying electrostatic and hydrophobic interactions as the cornerstones of this interaction.

View Article and Find Full Text PDF

Cooperation of Multifunctional Redox Mediator and Separator Modification to Enhance Li-S Batteries Performance under Low Electrolyte/Sulfur Ratios.

Angew Chem Int Ed Engl

December 2024

Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, PR China.

Sluggish reaction kinetics of sulfur species fundamentally trigger the incomplete conversion of S↔LiS and restricted lifespan of lithium-sulfur batteries, especially under high sulfur loading and/or low electrolyte/sulfur (E/S) ratios. Developing redox mediators (RMs) is an effective strategy to boost the battery reaction kinetics, yet their multifunctionality and shuttle inhibition are still not available. Here, a unique ethyl viologen (EtV) RM with two highly reversible redox couples (EtV/EtV, EtV/EtV) is demonstrated to well match the redox chemistry of sulfur species, in terms of accelerating the electron transfer in S reduction, LiS nucleation and the LiS oxidation.

View Article and Find Full Text PDF