666 results match your criteria: "Leibniz-Institute of Polymer Research[Affiliation]"

While it is now appreciated that the millions of tons of plastic pollution travelling through marine systems carry complex communities of microorganisms, it is still unknown to what extent these biofilm communities are specific to the plastic or selected by the surrounding ecosystem. To address this, we characterized and compared the microbial communities of microplastic particles, nonplastic (natural and wax) particles, and the surrounding waters from three marine ecosystems (the Baltic, Sargasso and Mediterranean seas) using high-throughput 16S rRNA gene sequencing. We found that biofilm communities on microplastic and nonplastic particles were highly similar to one another across this broad geographical range.

View Article and Find Full Text PDF

Durable endothelium-mimicking coating for surface bioengineering cardiovascular stents.

Bioact Mater

December 2021

Key Lab of Advanced Technology of Materials of Education Ministry, School of Materials Science and Engineering, Yibin Institute of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, China.

Mimicking the nitric oxide (NO)-release and glycocalyx functions of native vascular endothelium on cardiovascular stent surfaces has been demonstrated to reduce in-stent restenosis (ISR) effectively. However, the practical performance of such an endothelium-mimicking surfaces is strictly limited by the durability of both NO release and bioactivity of the glycocalyx component. Herein, we present a mussel-inspired amine-bearing adhesive coating able to firmly tether the NO-generating species (e.

View Article and Find Full Text PDF

Glial-cell-line-derived neurotrophic factor (GDNF) is a protein that has therapeutic potential in the treatment of Parkinson's disease and other neurodegenerative diseases. The activity of GDNF is highly dependent on the interaction with sulfated glycans which bind at the N-terminus consisting of 19 residues. Herein, we studied the influence of different glycosaminoglycan (i.

View Article and Find Full Text PDF

Targeted RNAi of BIRC5/Survivin Using Antibody-Conjugated Poly(Propylene Imine)-Based Polyplexes Inhibits Growth of PSCA-Positive Tumors.

Pharmaceutics

May 2021

Department of Neurosurgery, Section Experimental Neurosurgery and Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany.

Delivery of siRNAs for the treatment of tumors critically depends on the development of efficient nucleic acid carrier systems. The complexation of dendritic polymers (dendrimers) results in nanoparticles, called dendriplexes, that protect siRNA from degradation and mediate non-specific cellular uptake of siRNA. However, large siRNA doses are required for in vivo use due to accumulation of the nanoparticles in sinks such as the lung, liver, and spleen.

View Article and Find Full Text PDF

Three-dimensional (3D) cell culture models that provide a biologically relevant microenvironment are imperative to investigate cell-cell and cell-matrix interactions . Semi-synthetic star-shaped poly(ethylene glycol) (starPEG)-heparin hydrogels are widely used for 3D cell culture due to their highly tuneable biochemical and biomechanical properties. Changes in gene expression levels are commonly used as a measure of cellular responses.

View Article and Find Full Text PDF

Comparison and uncertainty evaluation of two centrifugal separators for microplastic sampling.

J Hazard Mater

July 2021

Department for Marine Bioanalytical Chemistry, Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Geesthacht, Germany. Electronic address:

For commonly applied microplastic sampling approaches based on filtration, high throughput and no size-discrimination are conflicting goals. Therefore, we propose two efficient centrifugal separators for small microplastic sampling, namely the utilization of a hydrocyclone as well as a continuous flow centrifuge. Thorough method optimization was followed by application in an extensive sampling study to investigate the separators' retention behavior for particulate plastics from estuarine waters.

View Article and Find Full Text PDF

Endothelium-Mimicking Surface Combats Thrombosis and Biofouling via Synergistic Long- and Short-Distance Defense Strategy.

Small

June 2021

Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Yibin Institute of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, China.

Thrombosis and infections are the main causes of implant failures (e.g., extracorporeal circuits and indwelling medical devices), which induce significant morbidity and mortality.

View Article and Find Full Text PDF

Controlling line defects in wrinkling: a pathway towards hierarchical wrinkling structures.

Soft Matter

June 2021

Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden e. V., Hohe Str. 6, 01069 Dresden, Germany. and Chair for Physical Chemistry of Polymeric Materials, Technical University Dresden, Mommsenstr. 4, 01062 Dresden, Germany.

We demonstrate a novel approach for controlling the line defect formation in microscopic wrinkling structures by patterned plasma treatment of elastomeric surfaces. Wrinkles were formed on polydimethylsiloxane (PDMS) surfaces exposed to low-pressure plasma under uniaxial stretching and subsequent relaxation. The wrinkling wavelength λ can be regulated via the treatment time and choice of plasma process gases (H2, N2).

View Article and Find Full Text PDF

Cytoplasmic condensation induced by membrane damage is associated with antibiotic lethality.

Nat Commun

April 2021

Institute for Medical Engineering & Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

Bactericidal antibiotics kill bacteria by perturbing various cellular targets and processes. Disruption of the primary antibiotic-binding partner induces a cascade of molecular events, leading to overproduction of reactive metabolic by-products. It remains unclear, however, how these molecular events contribute to bacterial cell death.

View Article and Find Full Text PDF

Langevin dynamics simulations are utilized to study the structure of a dendritic polyelectrolyte embedded in two component mixtures comprised of conventional (small) and bulky counterions. We vary two parameters that trigger conformational properties of the dendrimer: the reduced Bjerrum length, [Formula: see text], which controls the strength of electrostatic interactions and the number fraction of the bulky counterions, [Formula: see text], which impacts on their steric repulsion. We find that the interplay between the electrostatic and the counterion excluded volume interactions affects the swelling behavior of the molecule.

View Article and Find Full Text PDF

Berberine loaded chitosan nanoparticles encapsulated in polysaccharide-based hydrogel for the repair of spinal cord.

Int J Biol Macromol

July 2021

Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran; Shiraz Molecular Pathology Research Center, Dr Daneshbod Path Lab, Shiraz, Iran; Shefa Neurosciences Research Center, Khatam-Alanbia Hospita, Tehran, Iran.

The potential of berberine loaded in chitosan nanoparticles (BerNChs) within a hybrid of alginate (Alg) and chitosan (Ch) hydrogel was investigated for the substrate which is known as an inhibit activator proteins. The physicochemical properties of the developed Alg-Ch hydrogel were investigated by fourier-transform infrared spectroscopy. The swelling ability and degradation rate of hydrogels were also analyzed in a phosphate-buffered saline solution at physiological pH.

View Article and Find Full Text PDF

In this paper, we elucidate a generic mechanism behind strain-induced phase transition in aqueous solutions of silk-inspired biomimetics by atomistic molecular dynamics simulations. We show the results of modeling of homopeptides polyglycine Gly and polyalanine Ala and a heteropeptide (Gly-Ala-Gly-Ala-Gly-Ser), i.e.

View Article and Find Full Text PDF

This work considers the application of eco-friendly, biodegradable materials based on polylactide (PLA) and polyhydroxybutyrate (PHB), instead of conventional polymeric materials, in order to prevent further environmental endangerment by accumulation of synthetic petro-materials. This new approach to the topic is focused on analyzing the processing properties of blends without incorporating any additives that could have a harmful impact on human organisms, including the endocrine system. The main aim of the research was to find the best PLA/PHB ratio to obtain materials with desirable mechanical, processing and application properties.

View Article and Find Full Text PDF

The combined disulfide cross-linking and tyrosine-modification of very low molecular weight linear PEI synergistically enhances transfection efficacies and improves biocompatibility.

Eur J Pharm Biopharm

April 2021

Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Leipzig, Germany. Electronic address:

Efficient and non-toxic DNA delivery is still a major limiting factor for non-viral gene therapy. Among the large diversity of non-viral vectors, the cationic polymer polyethylenimine (PEI) plays a prominent role in nucleic acid delivery. Since higher molecular weight of PEI is beneficial for transfection efficacy, but also leads to higher cytotoxicity, the biodegradable cross-linking of low-molecular PEIs, e.

View Article and Find Full Text PDF

Based on the widely studied poly(l-lactic acid) (PLLA) and polyethylene terephthalate (PET) that are brittle in their fully crystalline form, this Letter shows that they can be made to be super ductile, heat resistant and optically clear by creating nano-sized crystals while preserving the entanglement network. Atomic force microscopic images confirm the perceived nano-confined crystallization. Time-resolved X-ray scattering/diffraction measurements reveal the emergence of cold crystallization during either stress relaxation from large stepwise melt-stretching or annealing of pre-melt-stretched PLLA and PET above Tg.

View Article and Find Full Text PDF

In the current context of green mobility and sustainability, the use of new generation natural fillers, namely, α-cellulose, has gained significant recognition. The presence of hydroxyl groups on α-cellulose has generated immense eagerness to map its potency as filler in an elastomeric composite. In the present work, α-cellulose-emulsion-grade styrene butadiene rubber (E-SBR) composite is prepared by conventional rubber processing method by using variable proportions of α-cellulose (1 to 40 phr) to assess its reinforce ability.

View Article and Find Full Text PDF

Solid surfaces with excellent nonwetting ability have drawn significant interest from interfacial scientists and engineers. While much effort was devoted to investigating macroscopic wetting phenomena on nonwetting surfaces, the otherwise microscopic wetting has received less attention, and the surface/interface properties at the microscopic scale are not well resolved and correlated with the macroscopic wetting behavior. Herein, we first characterize the nanoscopic morphology and effective stiffness of liquid-air interfaces inside nanopores (nanomenisci) on diverse nonwetting nanoporous surfaces underneath water droplets using atomic force microscopy.

View Article and Find Full Text PDF

Orientation analysis of the β-sheet structure within films of the established recombinant spider silk protein eADF4(C16) was performed using a concept based on dichroic transmission- and attenuated total reflection-Fourier transform infrared spectroscopy, lineshape analysis, assignment of amide I components to specific vibration modes, and transition dipole moment directions of β-sheet structures. Based on the experimental dichroic ratio , the order parameter of β-sheet structures was calculated with respect to uniaxial orientation. Films of eADF4(C16) were deposited on untexturized (Si) and unidirectionally scratched silicon substrates (Si-sc) and post-treated with MeOH vapor.

View Article and Find Full Text PDF

Phenolic-amine chemistry mediated synergistic modification with polyphenols and thrombin inhibitor for combating the thrombosis and inflammation of cardiovascular stents.

Biomaterials

February 2021

Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China. Electronic address:

Antithrombogenicity, anti-inflammation, and rapid re-endothelialization are central requirements for the long-term success of cardiovascular stents. In this work, a plant-inspired phenolic-amine chemistry strategy was developed to combine the biological functions of a plant polyphenol, tannic acid (TA), and the thrombin inhibitor bivalirudin (BVLD) for tailoring the desired multiple surface functionalities of cardiovascular stents. To realize the synergistic modification of TA and BVLD on a stent surface, an amine-bearing coating of plasma polymerized allylamine was firstly prepared on the stent surface, followed by the sequential conjugation of TA and BVLD in alkaline solution based on phenolic-amine chemistry (i.

View Article and Find Full Text PDF

We report the fabrication of scroll-like scaffolds with anisotropic topography using 4D printing based on a combination of 3D extrusion printing of methacrylated alginate, melt-electrowriting of polycaprolactone fibers, and shape-morphing of the fabricated object. A combination of 3D extrusion printing and melt-electrowriting allows programmed deposition of different materials and fabrication of structures with high resolution. Shape-morphing allows the transformation of a patterned surface of a printed structure in a pattern on inner surface of a folded object that is used to align cells.

View Article and Find Full Text PDF

Optical slice microscopy is commonly used to characterize the morphometric features of 3D cellular cultures, such as vascularization. However, the quantitative analysis of those structures is often performed on a single 2D maximum intensity projection image, limiting the accuracy of data obtained from 3D cultures. Here, we present a protocol for the quantitative analysis of z stack images, utilizing Fiji, Amira, and WinFiber3D.

View Article and Find Full Text PDF

This work focuses on the viscoelastic response of carbon/epoxy filament-wound composite rings under radial compressive loading in harsh environments. The composites are exposed to three hygro-thermo-mechanical conditions: (i) pure mechanical loading, (ii) mechanical loading in a wet environment and (iii) mechanical loading under hygrothermal conditioning at 40 ∘C. Dedicated equipment was built to carry out the creep experiments.

View Article and Find Full Text PDF

Stenting is a widely used treatment procedure for coronary artery disease around the world. Stents have a complex geometry, which makes the characterization of their corrosion difficult due to the absence of a mathematical model to calculate the entire stent surface area (ESSA). Therefore, corrosion experiments with stents are mostly based on qualitative analysis.

View Article and Find Full Text PDF

Silk Nanoparticle Manufacture in Semi-Batch Format.

ACS Biomater Sci Eng

December 2020

Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K.

Silk nanoparticles have demonstrated utility across a range of biomedical applications, especially as drug delivery vehicles. Their fabrication by bottom-up methods such as nanoprecipitation, rather than top-down manufacture, can improve critical nanoparticle quality attributes. Here, we establish a simple semi-batch method using drop-by-drop nanoprecipitation at the lab scale that reduces special-cause variation and improves mixing efficiency.

View Article and Find Full Text PDF

The extracellular matrix (ECM) is dynamically reorganized during wound healing. Concomitantly, recruited monocytes differentiate into macrophages. However, the role of the wound's ECM during this transition remain to be fully understood.

View Article and Find Full Text PDF