288 results match your criteria: "Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben[Affiliation]"

Centromeres are essential for chromosome segregation in eukaryotes, yet their specification is unexpectedly diverse among species and can involve major transitions such as those from localized to chromosome-wide centromeres between monocentric and holocentric species. How this diversity evolves remains elusive. We discovered within-cell variation in the recruitment of the major centromere protein CenH3, reminiscent of variation typically observed among species.

View Article and Find Full Text PDF

Chromatin modeling enables the characterization of chromatin architecture at a resolution so far unachievable with experimental techniques. Polymer models fill our knowledge gap on a wide range of structures, from chromatin loops to nuclear compartments. Many physical properties already known for polymers can thus explain the dynamics of chromatin.

View Article and Find Full Text PDF

Nucleotide-binding leucine-rich repeat (NLR) disease resistance genes typically confer resistance against races of a single pathogen. Here, we report that Yr87/Lr85, an NLR gene from Aegilops sharonensis and Aegilops longissima, confers resistance against both P. striiformis tritici (Pst) and Puccinia triticina (Pt) that cause stripe and leaf rust, respectively.

View Article and Find Full Text PDF

Pangenomes are collections of annotated genome sequences of multiple individuals of a species. The structural variants uncovered by these datasets are a major asset to genetic analysis in crop plants. Here we report a pangenome of barley comprising long-read sequence assemblies of 76 wild and domesticated genomes and short-read sequence data of 1,315 genotypes.

View Article and Find Full Text PDF

The genomes of many plants, animals, and fungi frequently comprise dispensable B chromosomes that rely upon various chromosomal drive mechanisms to counteract the tendency of non-essential genetic elements to be purged over time. The B chromosome of rye - a model system for nearly a century - undergoes targeted nondisjunction during first pollen mitosis, favouring segregation into the generative nucleus, thus increasing their numbers over generations. However, the genetic mechanisms underlying this process are poorly understood.

View Article and Find Full Text PDF

In most studied eukaryotes, chromosomes are monocentric, with centromere activity confined to a single region. However, the rush family (Juncaceae) includes species with both monocentric (Juncus) and holocentric (Luzula) chromosomes, where centromere activity is distributed along the entire chromosome length. Here, we combine chromosome-scale genome assembly, epigenetic analysis, immuno-FISH and super-resolution microscopy to study the transition to holocentricity in Luzula sylvatica.

View Article and Find Full Text PDF

In plants, L-serine (Ser) biosynthesis occurs through various pathways and is highly dependent on the atmospheric CO concentration, especially in C species, due to the association of the Glycolate Pathway of Ser Biosynthesis (GPSB) with photorespiration. Characterization of a second plant Ser pathway, the Phosphorylated Pathway of Ser Biosynthesis (PPSB), revealed that it is at the crossroads of carbon, nitrogen, and sulphur metabolism. The PPSB comprises three sequential reactions catalysed by 3-phosphoglycerate dehydrogenase (PGDH), 3-phosphoSer aminotransferase (PSAT) and 3-phosphoSer phosphatase (PSP).

View Article and Find Full Text PDF

Among flowering plants, genome size varies remarkably, by >2200-fold, and this variation depends on the loss and gain of noncoding DNA sequences that form distinct heterochromatin complexes during interphase. In plants with giant genomes, most chromatin remains condensed during interphase, forming a dense network of heterochromatin threads called interphase chromonemata. Using super-resolution light and electron microscopy, we studied the ultrastructure of chromonemata during and after replication in root meristem nuclei of Nigella damascena L.

View Article and Find Full Text PDF

Subsampling a reduced number of accessions from genebank collections, known as core collections, is a widely applied method for the investigation of stored genetic diversity and for an exploitation by breeding and research. Optimizing core collections for genome-wide association studies could potentially maximize opportunities to discover relevant and rare variation. In the present study, eight strategies to sample core collections were implemented separately for two traits, namely susceptibility to yellow rust and stem lodging, on about 6,300 accessions of winter wheat ( L.

View Article and Find Full Text PDF
Article Synopsis
  • Plant height (PH) is crucial for crop breeding, impacting both straw and grain yield in wheat, and this study aims to enhance understanding of the genetic factors influencing PH by using advanced GWAS techniques on diverse Bulgarian bread wheat varieties.
  • The research identified 25 quantitative trait loci (QTL) related to PH across 14 chromosomes, highlighting 21 environmentally stable quantitative trait nucleotides (QTNs) and novel genomic regions with no previously known associations, which could be significant for future breeding efforts.
  • Noteworthy findings include a haplotype block on chromosome 6A that contains both height-reducing and height-promoting QTN loci, indicating complex genetic interactions and potential pathways
View Article and Find Full Text PDF
Article Synopsis
  • Life evolved in a reducing environment but faced challenges from reactive oxygen species (ROS) during the great oxidation event (GOE), leading to the development of copper-zinc superoxide dismutases (CuZnSODs) in some plants.
  • The chemical inhibitor lung cancer screen 1 (LCS-1) was used to study the effects of CuZnSOD inhibition on plant growth, transcription, and metabolism across different species, including bryophytes and vascular plants.
  • The results showed that LCS-1 caused oxidative stress and a core physiological response related to glutathione balance in all species, but varying metabolic responses were observed based on the number and types of CuZnSOD isoforms present in each plant.
View Article and Find Full Text PDF
Article Synopsis
  • Plants have developed mechanisms to adapt their growth in response to environmental changes, with ELF3 being a key regulator that impacts their circadian clock and temperature sensitivity.
  • Research on Arabidopsis thaliana, specifically its prion-like domain (PrLD) within ELF3, revealed its function as a thermosensor at high temperatures, but its effectiveness in other plant species remains uncertain.
  • Variations in the length of polyglutamine (polyQ) repeats in ELF3 show wide diversity among A. thaliana accessions, but this variation is weakly linked to geographic and climatic factors, suggesting that while it may enhance ELF3's role in thermomorphogenesis, it isn't a major factor for environmental adaptation in other plants.
View Article and Find Full Text PDF

Distinct patterns of satDNA distribution in holocentric chromosomes of spike-sedges (, Cyperaceae).

Genome

September 2024

Laboratório de Citogenética e Diversidade Vegetal, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86097-570 Paraná, Brazil.

R. Br. (Cyperaceae) species are known for having holocentric chromosomes, which enable rapid karyotype differentiation.

View Article and Find Full Text PDF

Understanding the spatial organization of genomes within chromatin is crucial for deciphering gene regulation. A recently developed CRISPR-dCas9-based genome labeling tool, known as CRISPR-FISH, allows efficient labeling of repetitive sequences. Unlike standard fluorescence in situ hybridization (FISH), CRISPR-FISH eliminates the need for global DNA denaturation, allowing for superior preservation of chromatin structure.

View Article and Find Full Text PDF

It is undeniable that tropane alkaloids (TAs) have been both beneficial and detrimental to human health in the modern era. Understanding their biosynthesis is vital for using synthetic biology to engineer organisms for pharmaceutical production. The most parsimonious approaches to pathway elucidation are traditionally homology-based methods.

View Article and Find Full Text PDF

Plants are unique organisms that have developed ingenious strategies to cope with environmental challenges, such as herbivorous insects. One of these strategies is the synthesis of a vast array of chemical compounds, known as specialized metabolites, that serve many ecological functions. Among the most fascinating and diverse groups of specialized metabolites are the alkaloids, which are characterized by the presence of a nitrogen atom within a heterocyclic ring.

View Article and Find Full Text PDF

Meiotic double-strand break repair DNA synthesis tracts in Arabidopsis thaliana.

PLoS Genet

July 2024

Institut de Génétique, Reproduction et Développement, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France.

We report here the successful labelling of meiotic prophase I DNA synthesis in the flowering plant, Arabidopsis thaliana. Incorporation of the thymidine analogue, EdU, enables visualisation of the footprints of recombinational repair of programmed meiotic DNA double-strand breaks (DSB), with ~400 discrete, SPO11-dependent, EdU-labelled chromosomal foci clearly visible at pachytene and later stages of meiosis. This number equates well with previous estimations of 200-300 DNA double-strand breaks per meiosis in Arabidopsis, confirming the power of this approach to detect the repair of most or all SPO11-dependent meiotic DSB repair events.

View Article and Find Full Text PDF

Targeted Modification of Grain Dormancy Genes in Barley.

Methods Mol Biol

July 2024

Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan.

Transgenesis technologies, such as overexpression or RNA interference-mediated suppression, have often been used to alter the activity of target genes. More recently developed targeted genome modification methods using customizable endonucleases allow for the regulation or knockout mutation of target genes without the necessity of integrating recombinant DNA. Such approaches make it possible to create novel alleles of target genes, thereby significantly contributing to crop improvement.

View Article and Find Full Text PDF

In the realm of agricultural sustainability, the utilization of plant genetic resources for enhanced disease resistance is paramount. Preservation efforts in genebanks are justified by their potential contributions to future crop improvement. To capitalize on the potential of plant genetic resources, we focused on a barley core collection from the German ex situ genebank and contrasted it with a European elite collection.

View Article and Find Full Text PDF

Haploid induction (HI) holds great promise in expediting the breeding process in onion, a biennial cross-pollinated crop. We used the CENH3-based genome elimination technique in producing a HI line in onion. Here, we downregulated AcCENH3 using the RNAi approach without complementation in five independent lines.

View Article and Find Full Text PDF

Non-cell-autonomous signaling associated with barley ALOG1 specifies spikelet meristem determinacy.

Curr Biol

June 2024

Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany; Faculty of Natural Sciences III, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany. Electronic address:

Article Synopsis
  • Inflorescence architecture significantly impacts crop productivity in cereal crops, yet the genetic mechanisms behind this are not well understood.
  • This study identified a recessive allele in barley, HvALOG1, that alters spikelet and glume formation, suggesting its key role in controlling floral structure through localized signaling.
  • The research indicates that the ALOG family members work together to influence inflorescence shape, with HvALOG1 primarily responsible for maintaining meristem function and developing floral organs, highlighting their importance in cereal crop development.
View Article and Find Full Text PDF

Holocentric species are characterized by the presence of centromeres throughout the length of the chromosomes. We confirmed the holocentricity of the dioecious, small chromosome-size species Myristica fragrans based on the chromosome-wide distribution of the centromere-specific protein KNL1, α-tubulin fibers, and the cell cycle-dependent histone H3 serine 28 phosphorylation (H3S28ph) mark. Each holocentromere is likely composed of, on average, ten centromere units, but none of the identified and in situ hybridized high-copy satellite repeats is centromere-specific.

View Article and Find Full Text PDF

Genetic enhancement of grain production and quality is a priority in wheat breeding projects. In this study, we assessed two key agronomic traits-grain protein content (GPC) and thousand kernel weight (TKW)-across 179 Bulgarian contemporary and historic varieties and landraces across three growing seasons. Significant phenotypic variation existed for both traits among genotypes and seasons, and no discernible difference was evident between the old and modern accessions.

View Article and Find Full Text PDF

Barley (Hordeum vulgare) is an important global cereal crop and a model in genetic studies. Despite advances in characterising barley genomic resources, few mutant studies have identified genes controlling root architecture and anatomy, which plays a critical role in capturing soil resources. Our phenotypic screening of a TILLING mutant collection identified line TM5992 exhibiting a short-root phenotype compared with wild-type (WT) Morex background.

View Article and Find Full Text PDF