66 results match your criteria: "Leibniz Institute of Photonic Technology Leibniz-IPHT[Affiliation]"

The combination of manifold optical imaging modalities resulting in multimodal optical systems allows to discover a larger number of biomarkers than using a single modality. The goal of multimodal imaging systems is to increase the diagnostic performance through the combination of complementary modalities, e.g.

View Article and Find Full Text PDF

Background: Antimicrobial resistance (AMR) is an increasing global health concern reducing options for therapy of infections and also for perioperative prophylaxis. Many Enterobacteriaceae cannot be treated anymore with third generation cephalosporins (3GC) due to the production of certain 3GC hydrolysing enzymes (extended spectrum beta-lactamases, ESBLs). The role of animals as carriers and vectors of multi-resistant bacteria in different geographical regions is poorly understood.

View Article and Find Full Text PDF

Analyses of multifactorial experimental designs are used as an explorative technique describing hypothesized multifactorial effects based on their variation. The procedure of analyzing multifactorial designs is well established for univariate data, and it is known as analysis of variance (ANOVA) tests, whereas only a few methods have been developed for multivariate data. In this work, we present the weighted-effect ASCA, named WE-ASCA, as an enhanced version of ANOVA-simultaneous component analysis (ASCA) to deal with multivariate data in unbalanced multifactorial designs.

View Article and Find Full Text PDF

Wide field Raman imaging using the integral field spectroscopy approach was used as a fast, one shot imaging method for the simultaneous collection of all spectra composing a Raman image. For the suppression of autofluorescence and background signals such as room light, shifted excitation Raman difference spectroscopy (SERDS) was applied to remove background artifacts in Raman spectra. To reduce acquisition times in wide field SERDS imaging, we adapted the nod and shuffle technique from astrophysics and implemented it into a wide field SERDS imaging setup.

View Article and Find Full Text PDF

Giant refractometric sensitivity by combining extreme optical Vernier effect and modal interference.

Sci Rep

November 2020

INESC TEC and Department of Physics and Astronomy, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007, Porto, Portugal.

The optical Vernier effect consists of overlapping responses of a sensing and a reference interferometer with slightly shifted interferometric frequencies. The beating modulation thus generated presents high magnified sensitivity and resolution compared to the sensing interferometer, if the two interferometers are slightly out of tune with each other. However, the outcome of such a condition is a large beating modulation, immeasurable by conventional detection systems due to practical limitations of the usable spectral range.

View Article and Find Full Text PDF

Biochemical Characterization of Mouse Retina of an Alzheimer's Disease Model by Raman Spectroscopy.

ACS Chem Neurosci

October 2020

Leibniz Institute of Photonic Technology (Leibniz-IPHT), a member of the Leibniz Research Alliance Leibniz Health Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany.

The presence of biomarkers characteristic for Alzheimer's disease in the retina is a controversial topic. Raman spectroscopy offers information on the biochemical composition of tissues. Thus, it could give valuable insight into the diagnostic value of retinal analysis.

View Article and Find Full Text PDF

Bacteriophages, or "phages" for short, are viruses that replicate in bacteria. The therapeutic and biotechnological potential of phages and their lytic enzymes is of interest for their ability to selectively destroy pathogenic bacteria, including antibiotic-resistant strains. Introduction of phage preparations into medicine, biotechnology, and food industry requires a thorough characterization of phage-host interaction on a molecular level.

View Article and Find Full Text PDF

A rapid and reliable method for the differentiation between active and inactive bacteria at single cell level is urgently needed in many fields including clinical diagnosis and environmental microbiology, to understand the contribution of metabolically active bacteria in fundamental processes triggering environmental and public health risks. Here, using heavy water (DO) with Raman-stable isotope labeling (Raman-DO), we evaluated the reliability of the quantification of deuterium uptake, a well-known indicator for the general metabolic activity of bacteria. For this purpose, we based our study on the quantification of deuterium assimilation from heavy water into single bacterial cells to check the influence of carbon source and bacterial identity on the deuterium uptake.

View Article and Find Full Text PDF

Deep learning a boon for biophotonics?

J Biophotonics

June 2020

Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University, Jena, Germany.

This review covers original articles using deep learning in the biophotonic field published in the last years. In these years deep learning, which is a subset of machine learning mostly based on artificial neural network geometries, was applied to a number of biophotonic tasks and has achieved state-of-the-art performances. Therefore, deep learning in the biophotonic field is rapidly growing and it will be utilized in the next years to obtain real-time biophotonic decision-making systems and to analyze biophotonic data in general.

View Article and Find Full Text PDF

In this contribution, inspired by the excellent resource management and material transport function of leaf veins, the electrical transport function of metallized leaf veins is mimicked from the material transport function of the vein networks. By electroless copper plating on real leaf vein networks with copper thickness of only several hundred nanometre up to several micrometre, certain leaf veins can be converted to transparent conductive electrodes with an ultralow sheet resistance 100 times lower than that of state-of-the-art indium tin oxide thin films, combined with a broadband optical transmission of above 80% in the UV-VIS-IR range. Additionally, the resource efficiency of the vein-like electrode is characterized by the small amount of material needed to build up the networks and the low copper consumption during metallization.

View Article and Find Full Text PDF

Optical Harmonic Vernier Effect: A New Tool for High Performance Interferometric Fibre Sensors.

Sensors (Basel)

December 2019

INESC TEC and Department of Physics and Astronomy, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal.

The optical Vernier effect magnifies the sensing capabilities of an interferometer, allowing for unprecedented sensitivities and resolutions to be achieved. Just like a caliper uses two different scales to achieve higher resolution measurements, the optical Vernier effect is based on the overlap in the responses of two interferometers with slightly detuned interference signals. Here, we present a novel approach in detail, which introduces optical harmonics to the Vernier effect through Fabry-Perot interferometers, where the two interferometers can have very different frequencies in the interferometric pattern.

View Article and Find Full Text PDF

Recently Legionella pneumophila is the main causative waterborne organism of severe respiratory infections. Additionally, other Legionella species are documented as human pathogens. In our work, we describe a rapid detection method which combines two advantages for sensitive and specific detection of the genus Legionella: the fast isothermal amplification method "Loop-mediated isothermal AMPlification" (LAMP), and a colorimetric detection method using the metal indicator hydroxynaphtol blue (HBN) which allows to determine an optical signal with a simple readout (with the naked eye).

View Article and Find Full Text PDF

Structural insights into heme binding to IL-36α proinflammatory cytokine.

Sci Rep

November 2019

Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, D-53121, Bonn, Germany.

Article Synopsis
  • Cytokines from the interleukin (IL)-1 family play key roles in controlling immune and inflammatory responses, with the recently identified IL-36 family involved in conditions like psoriasis and arthritis.
  • The study reveals that IL-36α interacts with heme, highlighting two specific heme-binding sites and providing structural insights through spectroscopy and NMR analysis.
  • Findings suggest that heme negatively regulates IL-36 signaling in rheumatoid arthritis fibroblast cells, indicating that IL-1 cytokines may be influenced by heme, expanding our understanding of heme-binding proteins.
View Article and Find Full Text PDF

Existing approaches for early-stage bladder tumor diagnosis largely depend on invasive and time-consuming procedures, resulting in hospitalization, bleeding, bladder perforation, infection and other health risks for the patient. The reduction of current risk factors, while maintaining or even improving the diagnostic precision, is an underlying factor in clinical instrumentation research. For example, for clinic surveillance of patients with a history of noninvasive bladder tumors real-time tumor diagnosis can enable immediate laser-based removal of tumors using flexible cystoscopes in the outpatient clinic.

View Article and Find Full Text PDF

Methicillin-resistant Staphylococcus aureus (MRSA) are a major concern for public health, and broiler farms are a potential source of MRSA isolates. In this study, a total of 56 MRSA isolates from 15 broiler farms from 4 different counties in Germany were characterised phenotypically and genotypically. Spa types, dru types, SCCmec types, and virulence genes as well as resistance genes were determined by using a DNA microarray or specific PCR assays.

View Article and Find Full Text PDF

Analyzing the cells in various body fluids can greatly deepen the understanding of the mechanisms governing the cellular physiology. Due to the variability of physiological and metabolic states, it is important to be able to perform such studies on individual cells. Therefore, we developed an optofluidic system in which we precisely manipulated and monitored individual cells of .

View Article and Find Full Text PDF