75 results match your criteria: "Leibniz Institute for Plasma Science and Technology (INP Greifswald)[Affiliation]"

Comparative Analysis of Canonical Inflammasome Activation by Flow Cytometry, Imaging Flow Cytometry and High-Content Imaging.

Inflammation

September 2024

Pediatric Rheumatology, Department Pediatric and Adolescent Medicine, University Medicine, University of Greifswald, 17475, Greifswald, Germany.

Inflammasome activation occurs in various diseases, including rare diseases that require multicenter studies for investigation. Flow cytometric analysis of ASC speck cells in patient samples can be used to detect cell type-specific inflammasome activation. However, this requires standardized sample processing and the ability to compare data from different flow cytometers.

View Article and Find Full Text PDF

Targeting the Complexity of In Vitro Skin Models: A Review of Cutting-Edge Developments.

J Invest Dermatol

December 2024

Bioengineering Department, Universidad Carlos III de Madrid, Leganés, Spain; Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain. Electronic address:

Skin in vitro models offer much promise for research, testing drugs, cosmetics, and medical devices, reducing animal testing and extensive clinical trials. There are several in vitro approaches to mimicking human skin behavior, ranging from simple cell monolayer to complex organotypic and bioengineered 3-dimensional models. Some have been approved for preclinical studies in cosmetics, pharmaceuticals, and chemicals.

View Article and Find Full Text PDF

Desktop laser cutters are an affordable and flexible rapid-prototyping tool, but some materials cannot be safely processed. Among them is polyvinyl chloride (PVC), which users usually cannot distinguish from other, unproblematic plastics. Therefore, an identification system for PVC applicable in a low-cost laser cutter has been developed.

View Article and Find Full Text PDF

The emerging use of low-temperature plasma in medicine, especially in wound treatment, calls for a better way of documenting the treatment parameters. This paper describes the development of a mobile sensory device (referred to as MSD) that can be used during the treatment to ease the documentation of important parameters in a streamlined process. These parameters include the patient's general information, plasma source device used in the treatment, plasma treatment time, ambient humidity and temperature.

View Article and Find Full Text PDF

d-Glucose Oxidation by Cold Atmospheric Plasma-Induced Reactive Species.

ACS Omega

September 2022

Leibniz Institute for Plasma Science and Technology (INP Greifswald), Center for Innovation Competence (ZIK) plasmatis, Felix-Hausdorff-Straße 2, Greifswald 17489, Germany.

The glucose oxidation cascade is fascinating; although oxidation products have high economic value, they can manipulate the biological activity through posttranslational modification such as glycosylation of proteins, lipids, and nucleic acids. The concept of this work is based on the ability of reactive species induced by cold atmospheric plasma (CAP) in aqueous liquids and the corresponding gas-liquid interface to oxidize biomolecules under ambient conditions. Here, we report the oxidation of glucose by an argon-based dielectric barrier discharge plasma jet (kINPen) with a special emphasis on examining the reaction pathway to pinpoint the most prominent reactive species engaged in the observed oxidative transformation.

View Article and Find Full Text PDF

Purpose: Papillary thyroid carcinoma (PTC) is the most frequent subtype of thyroid cancer; Hashimoto's thyroiditis (HT), autoimmune disease, commonly affects the thyroid gland; there is possibly a correlation between both, but the exact mechanisms that involve this relationship are still under debate. Since oxidative stress (OS) and the inflammatory environment participate in the development of several types of cancer, the objective of the present study was to establish the microenvironment and systemic participation of OS and inflammatory markers in patients with PTC and HT.

Methods: Blood and tissue samples were collected from 115 patients: BENIGN (n = 63); PTC (n = 27); HT (n = 15) and PTC + HT (n = 10), and sixty-three were samples from healthy individuals (control group).

View Article and Find Full Text PDF

Cyclooxygenase (COX) enzymes comprise COX-1 and COX-2 isoforms and are responsible for prostaglandin production. Prostaglandins have critical roles in the inflammation pathway and must be controlled by administration of selective nonsteroidal anti-inflammatory drugs (NSAIDs). Selective COX-2 inhibitors have been among the most used NSAIDs during the ongoing coronavirus 2019 pandemic because they reduce pain and protect against inflammation-related diseases.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) are known to trigger drug release from arylboronate-containing ROS-responsive prodrugs. In cancer cells, elevated levels of ROS can be exploited for the selective activation of prodrugs via Baeyer-Villiger type oxidation rearrangement sequences. Here, we report a proof of concept to demonstrate that these cascades can as well be initiated by cold physical plasma (CPP).

View Article and Find Full Text PDF

Oxidative stress role on metformin process of dacarbazine (DTIC) inducing resistance of B16F10 melanoma murine cells are investigated. To induce resistance to DTIC, murine melanoma cells were exposed to increasing concentrations of dacarabazine (DTIC-res group). Metformin was administered before and during the induction of resistance to DTIC (MET-DTIC).

View Article and Find Full Text PDF

Saliva is an attractive sampling matrix for measuring various endogenous and exogeneous substances but requires sample treatment prior to chromatographic analysis. Exploiting supercritical CO for both extraction and chromatography simplifies sample preparation, reduces organic solvent consumption, and minimizes exposure to potentially infectious samples, but has not yet been applied to oral fluid. Here, we demonstrate the feasibility and benefits of online supercritical fluid extraction coupled to supercritical fluid chromatography and single-quadrupole mass spectrometry for monitoring the model salivary tracer caffeine.

View Article and Find Full Text PDF

Several chronic inflammatory diseases have been found to be a subtype of IgG4-related disease, all of which have a typical clinical and histological change, which is based in particular on an overexpression of IgG4 and subsequent fibrosis. At least a part of the retroperitoneal fibrosis, which was originally classified as idiopathic, seems to be assigned to IgG4-related disease. Lymphangiomas are benign, cystic tumors that rarely occur in adults.

View Article and Find Full Text PDF

Macrophages and immuno-modulation play a dominant role in the pathology of pancreatic cancer. Gas plasma is a technology recently suggested to demonstrate anticancer efficacy. To this end, two murine cell lines were employed to analyze the inflammatory consequences of plasma-treated pancreatic cancer cells (PDA) on macrophages using the kINPen plasma jet.

View Article and Find Full Text PDF

Tumors of the abdominal cavity, such as colorectal, pancreatic and ovarian cancer, frequently metastasize into the peritoneum. Large numbers of metastatic nodules hinder curative surgical resection, necessitating lavage with hyperthermic intraperitoneal chemotherapy (HIPEC). However, HIPEC not only causes severe side effects but also has limited therapeutic efficacy in various instances.

View Article and Find Full Text PDF

Currently, there is no standard therapy for a BK virus infection of the urogenital tract in immunocompromised, stem cell transplanted patients, so that early diagnosis and introduction of supportive measures have the highest response rates to date.

View Article and Find Full Text PDF

Cold physical plasmas modulate cellular redox signaling processes, leading to the evolution of a number of clinical applications in recent years. They are a source of small reactive species, including reactive nitrogen species (RNS). Wound healing is a major application and, as its physiology involves RNS signaling, a correlation between clinical effectiveness and the activity of plasma-derived RNS seems evident.

View Article and Find Full Text PDF

Cold physical plasmas are emerging tools for wound care and cancer control that deliver reactive oxygen species (ROS) and nitrogen species (RNS). Alongside direct effects on cellular signaling processes, covalent modification of biomolecules may contribute to the observed physiological consequences. The potential of ROS/RNS generated by two different plasma sources (kINPen and COST-Jet) to introduce post-translational modifications (PTMs) in the peptides angiotensin and bradykinin was explored.

View Article and Find Full Text PDF

The principles of physics and precision engineering have allowed many technologies to enter standard treatment regimens for a range of diseases. Recently, a new type of technology has been accredited as safe and efficient routine procedure in dermatology in Europe: cold physical plasma. Several accredited devices successfully restrain the powerful energy of plasmas to make them available for therapeutic purposes.

View Article and Find Full Text PDF

Background/aim: The antiproliferative effects of cold atmospheric plasma (CAP) make it a promising application option in oncology. The aim of the present study was to examine whether short-term CAP treatment leads to an initial partial elimination of the treated cells or to long-term impairement and inhibition of cell growth.

Materials And Methods: Cells were treated with CAP and biostatistical modelling was used to estimate growth rates over the incubation time.

View Article and Find Full Text PDF

The generation of cold physical plasma at atmospheric pressure (cold atmospheric plasma: CAP) generates different reactive molecular species as well as radiation in the ultraviolet (UV) range. The therapy of tumor diseases has proven to be a new promising area of application for CAP treatment. With regard to the routine use of CAP in cancer therapy, however, application safety must be ensured both for the patient and for the operator.

View Article and Find Full Text PDF

Medical technologies from physics are imperative in the diagnosis and therapy of many types of diseases. In 2013, a novel cold physical plasma treatment concept was accredited for clinical therapy. This gas plasma jet technology generates large amounts of different reactive oxygen and nitrogen species (ROS).

View Article and Find Full Text PDF

Background: Physical plasma is a mixture of reactive particles and electromagnetic radiation. Due to the antimicrobial, immunomodulatory, anti-inflammatory, wound-healing promoting, and antineoplastic effects of body tempered physical plasma under atmospheric pressure (cold atmospheric plasma: CAP), CAP therapy is increasingly becoming the focus of surgical and oncological disciplines. However, when applied in practice, a potential emission of harmful noxae such as toxic nitrogen oxides must be taken into account, which was investigated in the following study.

View Article and Find Full Text PDF

Chondrosarcoma is the second most common malign bone tumor in adults. Surgical resection of the tumor is recommended because of its resistance to clinical treatment such as chemotherapy and radiation therapy. Thus, the prognosis for patients mainly depends on sufficient surgical resection.

View Article and Find Full Text PDF

Cold atmospheric plasmas (CAPs) are promising medical tools and are currently applied in dermatology and epithelial cancers. While understanding of the biomedical effects is already substantial, knowledge on the contribution of individual ROS and RNS and the mode of activation of biochemical pathways is insufficient. Especially the formation and transport of short-lived reactive species in liquids remain elusive, a situation shared with other approaches involving redox processes such as photodynamic therapy.

View Article and Find Full Text PDF

Recently, the potential use of cold atmospheric pressure plasma (CAP) in cancer treatment has gained increasing interest. Especially the enhanced selective killing of tumor cells compared to normal cells has prompted researchers to elucidate the molecular mechanisms for the efficacy of CAP in cancer treatment. This review summarizes the current understanding of how CAP triggers intracellular pathways that induce growth inhibition or cell death.

View Article and Find Full Text PDF