108 results match your criteria: "Leibniz Institute for Immunotherapy[Affiliation]"

Ex vivo expansion of human CD34+ hematopoietic stem and progenitor cells remains a challenge due to rapid differentiation after detachment from the bone marrow niche. In this study, we assessed the capacity of an inducible fusion protein to enable sustained ex vivo proliferation of hematopoietic precursors and their capacity to differentiate into functional phagocytes. We fused the coding sequences of an FK506-Binding Protein 12 (FKBP12)-derived destabilization domain (DD) to the myeloid/lymphoid lineage leukemia/eleven nineteen leukemia (MLL-ENL) fusion gene to generate the fusion protein DD-MLL-ENL and retrovirally expressed the protein switch in human CD34+ progenitors.

View Article and Find Full Text PDF

Malignancies represent a persisting worldwide health burden. Tumor treatment is commonly based on surgical and/or non-surgical therapies. In the recent decade, novel non-surgical treatment strategies involving monoclonal antibodies (mAB) and immune checkpoint inhibitors (ICI) have been successfully incorporated into standard treatment algorithms.

View Article and Find Full Text PDF

Synthetic soldiers: Turning T cells into immortal warriors.

J Exp Med

May 2024

Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany.

The creation of synthetic T cell states has captivated the field of cell-based therapies. Wang et al. (https://doi.

View Article and Find Full Text PDF

The adoptive transfer of regulatory T cells is a promising strategy to prevent graft-versus-host disease after allogeneic bone marrow transplantation. Here, we use a major histocompatibility complex-mismatched mouse model to follow the fate of in vitro expanded donor regulatory T cells upon migration to target organs. Employing comprehensive gene expression and repertoire profiling, we show that they retain their suppressive function and plasticity after transfer.

View Article and Find Full Text PDF

Purpose: Cytokine-engineering of chimeric antigen receptor-redirected T cells (CAR T cells) is a promising principle to overcome the limited activity of canonical CAR T cells against solid cancers.

Experimental Design: We developed an investigational medicinal product, GD2IL18CART, consisting of CAR T cells directed against ganglioside GD2 with CAR-inducible IL18 to enhance their activation response and cytolytic effector functions in the tumor microenvironment. To allow stratification of patients according to tumor GD2 expression, we established and validated immunofluorescence detection of GD2 on paraffin-embedded tumor tissues.

View Article and Find Full Text PDF

Magnetic CAR T cell purification using an anti-G4S linker antibody.

J Immunol Methods

May 2024

Leibniz Institute for Immunotherapy, Div. Genetic Immunotherapy, Regensburg, and Chair Genetic Immunotherapy, University Regensburg, Germany.

Chimeric antigen receptor (CAR) redirected T cells are successfully employed in the combat against several hematological malignancies, however, are often compromised by low transduction rates making refinement of the CAR T cell products necessary. Here, we report a broadly applicable enrichment protocol relying on marking CAR T cells with an anti-glycine-serine (G4S) linker antibody followed by magnetic activated cell sorting (MACS). The protocol is broadly applicable since the G4S peptide is an integral part of the vast majority of CARs as it links the VH and VL recognition domains.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T-cell therapy causes serious side effects including cytokine release syndrome (CRS). CRS-related coagulopathy is associated with hypofibrinogenemia that has up to now been considered the result of disseminated intravascular coagulation (DIC) and liver dysfunction. We investigated the incidence and risk factors for hypofibrinogenemia in 41 consecutive adult patients with hematologic malignancies (median age 69 years, range 38-83 years) receiving CAR T-cell therapy between January 2020 and May 2023 at the University Medical Center Regensburg.

View Article and Find Full Text PDF

Vitamin D3 regulates a variety of biological processes irrespective of its well-known importance for calcium metabolism. Epidemiological and animal studies indicate a role in immune regulation, intestinal barrier function and microbiome diversity. Here, we analyzed the impact of different vitamin D3- containing diets on C57BL/6 and BALB/c mice, with a particular focus on gut homeostasis and also investigated effects on immune cells .

View Article and Find Full Text PDF

Integration of ζ-deficient CARs into the CD3ζ gene conveys potent cytotoxicity in T and NK cells.

Blood

June 2024

Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.

Chimeric antigen receptor (CAR)-redirected immune cells hold significant therapeutic potential for oncology, autoimmune diseases, transplant medicine, and infections. All approved CAR-T therapies rely on personalized manufacturing using undirected viral gene transfer, which results in nonphysiological regulation of CAR-signaling and limits their accessibility due to logistical challenges, high costs and biosafety requirements. Random gene transfer modalities pose a risk of malignant transformation by insertional mutagenesis.

View Article and Find Full Text PDF

Immune reconstitution after allogeneic hematopoietic stem cell transplantation (allo-HSCT) is slow and patients carry a high and prolonged risk of opportunistic infections. We hypothesized that the adoptive transfer of donor B cells can foster after HSCT immuno-reconstitution. Here, we report, to our knowledge, the results of a first-in-human phase 1/2a study aimed to evaluate the feasibility and safety of adoptively transferred donor B cells and to test their activity upon recall vaccination.

View Article and Find Full Text PDF

D-2-hydroxyglutarate (D-2-HG) accumulates in patients with acute myeloid leukemia (AML) with mutated isocitrate dehydrogenase (IDH) and in other malignancies. D-2-HG suppresses antitumor T-cell immunity but little is known about potential effects on non-malignant myeloid cells. Here we show that D-2-HG impairs human but not murine dendritic cell differentiation, resulting in a tolerogenic phenotype with low major histocompatibility class II expression.

View Article and Find Full Text PDF

CD8 T lymphocytes are classically viewed as cytotoxic T cells. Whether human CD8 T cells can, in parallel, induce a tissue regeneration program is poorly understood. Here, antigen-specific assay systems revealed that human CD8 T cells not only mediated cytotoxicity but also promoted tissue remodeling.

View Article and Find Full Text PDF

The microbiome is a predictor of clinical outcome in patients receiving allogeneic hematopoietic stem cell transplantation (allo-SCT). Microbiota-derived metabolites can modulate these outcomes. How bacteria, fungi and viruses contribute to the production of intestinal metabolites is still unclear.

View Article and Find Full Text PDF

Fine-tuning the antigen sensitivity of CAR T cells: emerging strategies and current challenges.

Front Immunol

December 2023

Leibniz Institute for Immunotherapy, Division of Genetic Immunotherapy, Chair Genetic Immunotherapy, University Regensburg, Regensburg, Germany.

Chimeric antigen receptor (CAR) T cells are "living drugs" that specifically recognize their target antigen through an antibody-derived binding domain resulting in T cell activation, expansion, and destruction of cognate target cells. The FDA/EMA approval of CAR T cells for the treatment of B cell malignancies established CAR T cell therapy as an emerging pillar of modern immunotherapy. However, nearly every second patient undergoing CAR T cell therapy is suffering from disease relapse within the first two years which is thought to be due to downregulation or loss of the CAR target antigen on cancer cells, along with decreased functional capacities known as T cell exhaustion.

View Article and Find Full Text PDF

The functional fitness of CAR T cells plays a crucial role in determining their clinical efficacy. Several strategies are being explored to increase cellular fitness, but screening these approaches in vivo is expensive and time-consuming, limiting the number of strategies that can be tested at one time. The presence of polyfunctional CAR T cells has emerged as a critical parameter correlating with clinical responses.

View Article and Find Full Text PDF

Head and neck squamous cell carcinoma (HNSCC) is a major challenge for current therapies. CAR-T cells have shown promising results in blood cancers, however, their effectiveness against solid tumors remains a hurdle. Recently, CD44v6-directed CAR-T cells demonstrated efficacy in controlling tumor growth in multiple myeloma and solid tumors such as HNSCC, lung and ovarian adenocarcinomas.

View Article and Find Full Text PDF

Tumor heterogeneity and tumor-microglia interactions in primary and recurrent IDH1-mutant gliomas.

Cell Rep Med

November 2023

Neurology Clinic and National Center for Tumor Diseases, Heidelberg University Hospital and Heidelberg University, Heidelberg, Germany; DKTK CCU Neurooncology, DKFZ, Heidelberg, Germany. Electronic address:

The isocitrate dehydrogenase (IDH) gene is recurrently mutated in adult diffuse gliomas. IDH-mutant gliomas are categorized into oligodendrogliomas and astrocytomas, each with unique pathological features. Here, we use single-nucleus RNA and ATAC sequencing to compare the molecular heterogeneity of these glioma subtypes.

View Article and Find Full Text PDF

Background & Aims: Intratumoral lactate accumulation and acidosis impair T-cell function and antitumor immunity. Interestingly, expression of the lactate transporter monocarboxylate transporter (MCT) 4, but not MCT1, turned out to be prognostic for the survival of patients with rectal cancer, indicating that single MCT4 blockade might be a promising strategy to overcome glycolysis-related therapy resistance.

Methods: To determine whether blockade of MCT4 alone is sufficient to improve the efficacy of immune checkpoint blockade (ICB) therapy, we examined the effects of the selective MCT1 inhibitor AZD3965 and a novel MCT4 inhibitor in a colorectal carcinoma (CRC) tumor spheroid model co-cultured with blood leukocytes in vitro and the MC38 murine CRC model in vivo in combination with an antibody against programmed cell death ligand-1(PD-L1).

View Article and Find Full Text PDF

The microbial metabolite desaminotyrosine enhances T-cell priming and cancer immunotherapy with immune checkpoint inhibitors.

EBioMedicine

November 2023

Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany; Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany; Centre for Immunomedicine in Transplantation and Oncology (CITO), Regensburg, Germany; Bavarian Cancer Research Centre (BZKF), Regensburg, Germany. Electronic address:

Background: Inter-individual differences in response to immune checkpoint inhibitors (ICI) remain a major challenge in cancer treatment. The composition of the gut microbiome has been associated with differential ICI outcome, but the underlying molecular mechanisms remain unclear, and therapeutic modulation challenging.

Methods: We established an in vivo model to treat C57Bl/6j mice with the type-I interferon (IFN-I)-modulating, bacterial-derived metabolite desaminotyrosine (DAT) to improve ICI therapy.

View Article and Find Full Text PDF

Releasing the brake: CTLA-4 loss turbocharges CAR T cells.

Immunity

October 2023

Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany; University of Regensburg, Regensburg, Germany; Center for Immunomedicine in Transplantation and Oncology, University Hospital Regensburg, Regensburg, Germany. Electronic address:

Immune checkpoint receptor-induced T cell dysfunction is a major cause of CAR T cell treatment failure. In this issue, Agarwal et al. report that CRISPR/Cas9 deletion of CTLA4, but not PDCD1 or CTLA4 and PDCD1, enhances CD28 signaling, restoring fitness and antitumor function of CAR T cells, including those derived from patients who failed CAR T cell therapy.

View Article and Find Full Text PDF

Type 2 immune responses form a critical defence against enteric worm infections. In recent years, mouse models have revealed shared and unique functions for group 2 innate lymphoid cells and T helper 2 cells in type 2 immune response to intestinal helminths. Both cell types use similar innate effector functions at the site of infection, whereas each population has distinct roles during different stages of infection.

View Article and Find Full Text PDF

Chronic graft-versus-host disease (cGVHD) is the leading cause of late nonrelapse mortality (NRM) after allogeneic hematopoietic stem cell transplantation (alloHSCT) and defined by 8 diagnostic target organs. Recently, provisional criteria for atypical manifestations of cGVHD that include manifestations in nonclassic organs as well as atypical manifestations in National Institutes of Health (NIH)-defined organs, were proposed by a NIH task force. Little is known about the incidence, risk factors, and impact on survival of atypical cGVHD, however.

View Article and Find Full Text PDF