41 results match your criteria: "Leibniz Institute for Baltic Sea Research (IOW)[Affiliation]"

Living organisms are active open systems far from thermodynamic equilibrium. The ability to behave actively corresponds to dynamical metastability: minor but supercritical internal or external effects may trigger major substantial actions such as gross mechanical motion, dissipating internally accumulated energy reserves. Gaining a selective advantage from the beneficial use of activity requires a consistent combination of sensual perception, memorised experience, statistical or causal prediction models, and the resulting favourable decisions on actions.

View Article and Find Full Text PDF

Rationale: Clumped isotope (Δ ) analysis of bioapatite-derived CO is a powerful tool to determine body temperatures of extinct vertebrates. The common acid bath technique in combination with dual-inlet-based mass spectrometric measurements has been the preferred method of choice for this purpose, but the large amount of material necessary and the presence of secondary calcite represent obstacles.

Methods: We analyzed the Δ composition of carbonate-bearing (bio)apatites using a Kiel IV device, which - in general - allows a reduction of sample replicate size by a factor of ~40 over dual-inlet-based techniques.

View Article and Find Full Text PDF

Tidal marshes store large amounts of organic carbon in their soils. Field data quantifying soil organic carbon (SOC) stocks provide an important resource for researchers, natural resource managers, and policy-makers working towards the protection, restoration, and valuation of these ecosystems. We collated a global dataset of tidal marsh soil organic carbon (MarSOC) from 99 studies that includes location, soil depth, site name, dry bulk density, SOC, and/or soil organic matter (SOM).

View Article and Find Full Text PDF

Combined effects of temperature and emersion-immersion cycles on metabolism and bioenergetics of the Pacific oyster Crassostrea (Magallana) gigas.

Mar Environ Res

November 2023

Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, 18059, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Albert-Einstein-Str. 21, 18059, Rostock, Germany. Electronic address:

Life on tidal coasts presents physiological major challenges for sessile species. Fluctuations in oxygen and temperature can affect bioenergetics and modulate metabolism and redox balance, but their combined effects are not well understood. We investigated the effects of intermittent hypoxia (12h/12h) in combination with different temperature regimes (normal (15 °C), elevated (30 °C) and fluctuating (15 °C water/30 °C air)) on the Pacific oyster Crassostrea (Magallana) gigas.

View Article and Find Full Text PDF

Discrepancies have emerged concerning the application of sulfur stable isotope ratios as a biosignature in impact crater paleolakes. The first δS data from Mars at Gale crater display a ∼75‰ range that has been attributed to an abiotic mechanism. Yet biogeochemical studies of ancient environments on Earth generally interpret δS fractionations >21‰ as indicative of a biological origin, and studies of δS at analog impact crater lakes on Earth have followed the same approach.

View Article and Find Full Text PDF

Rationale: The analytical method to determine the stable oxygen isotope ( O/ O) composition of carbonates via phosphoric acid digestion leads to temperature- and solid-dependent kinetic isotope fractionation. Values for the double carbonate norsethite (BaMg(CO ) ) have been unknown so far.

Methods: The temperature dependence of kinetic oxygen isotope fractionation during the reaction of synthetic and natural BaMg(CO ) with orthophosphoric acid (H PO ) according to the overall reaction BaMg(CO ) + 2H PO = Ba + Mg + 2HPO + 2CO + 2H O has been examined for the first time using separate carbonate decomposition via fluorination or phosphoric acid digestion, with the resulting gases analyzed by isotope ratio monitoring mass spectrometry.

View Article and Find Full Text PDF

Bacterial degradation of sinking diatom aggregates is key for the availability of organic matter in the deep-ocean. Yet, little is known about the impact of aggregate colonization by different bacterial taxa on organic carbon and nutrient cycling within aggregates. Here, we tracked the carbon (C) and nitrogen (N) transfer from the diatom Leptocylindrus danicus to different environmental bacterial groups using a combination of C and N isotope incubation (incubated for 72 h), CARD-FISH and nanoSIMS single-cell analysis.

View Article and Find Full Text PDF

Climate change influences the ocean's physical and biogeochemical conditions, causing additional pressures on marine environments and ecosystems, now and in the future. Such changes occur in environments that already today suffer under pressures from, for example, eutrophication, pollution, shipping, and more. We demonstrate how to implement climate change into regional marine spatial planning by introducing data of future temperature, salinity, and sea ice cover from regional ocean climate model projections to an existing cumulative impact model.

View Article and Find Full Text PDF

Fungal microparasites (here chytrids) are widely distributed and yet, they are often overlooked in aquatic environments. To facilitate the detection of microparasites, we revisited the applicability of two fungal cell wall markers, Calcofluor White (CFW) and wheat germ agglutinin (WGA), for the direct visualization of chytrid infections on phytoplankton in laboratory-maintained isolates and field-sampled communities. Using a comprehensive set of chytrid-phytoplankton model pathosystems, we verified the staining pattern on diverse morphological structures of chytrids via fluorescence microscopy.

View Article and Find Full Text PDF

Cyanobacteria are important primary producers in temperate freshwater ecosystems. However, studies on the seasonal and spatial distribution of cyanobacteria in deep lakes based on high-throughput DNA sequencing are still rare. In this study, we combined monthly water sampling and monitoring in 2019, amplicon sequence variants analysis (ASVs; a proxy for different species) and quantitative PCR targeting overall cyanobacteria abundance to describe the seasonal and spatial dynamics of cyanobacteria in the deep hard-water oligo-mesotrophic Lake Tiefer See, NE Germany.

View Article and Find Full Text PDF

Sedimentary faecal lipids as indicators of Baltic Sea sewage pollution and population growth since 1860 AD.

Environ Res

March 2022

Ecole Polytechnique Fédérale de Lausanne (EPFL), Route Cantonale, 1015 Lausanne, Switzerland; Max Planck Institute for Demographic Research, Konrad-Zuse-Strasse 1, 18057, Rostock, Germany.

The stress on the environment is increasing as the human population living on it increases. Water eutrophication, a leading cause of impairment of many freshwater and coastal marine ecosystems in the world, is a typical consequence of anthropogenic pressure on the environment. The Baltic Sea represents an excellent example of eutrophication-related massive bottom water deoxygenation since 1950s, when the nutrient inputs derived from agricultural fertilisers and wastewater discharges increased significantly.

View Article and Find Full Text PDF

Tropical urbanized coastal regions are hotspots for the discharge of nutrient-enriched groundwater, which can affect sensitive coastal ecosystems. Here, we investigated how a beach modifies groundwater nutrient loads in southern India (Varkala Beach), using flux measurements and stable isotopes. Fresh groundwater was highly enriched in NO from sewage or manure.

View Article and Find Full Text PDF

Eutrophication in lakes and reservoirs has prompted interest in using sediment capping technology to reduce the sediment contribution to internal nutrient loading. One such sediment capping technology is Phoslock®, a lanthanum-embedded clay, which can bind phosphate at the sediment surface and limit its diffusion into the water column. However, in well-oxygenated lakes, naturally occurring iron can bind phosphate by a similar mechanism.

View Article and Find Full Text PDF

The occurrence of foams at oceans' surfaces is patchy and generally short-lived, but a detailed understanding of bacterial communities inhabiting sea foams is lacking. Here, we investigated how marine foams differ from the sea-surface microlayer (SML), a <1-mm-thick layer at the air-sea interface, and underlying water from 1 m depth. Samples of sea foams, SML and underlying water collected from the North Sea and Timor Sea indicated that foams were often characterized by a high abundance of small eukaryotic phototrophic and prokaryotic cells as well as a high concentration of surface-active substances (SAS).

View Article and Find Full Text PDF

In the present study we investigated the isotope effects associated with water loss from closed low-density polyethylene (LDPE) bottles via diffusion at temperatures between 4 and 60 °C. While at low temperatures (4 and 10 °C) no substantial diffusional loss of water was observed within storage time, a pronounced loss was found for the experiments at room temperature and 60 °C. The latter was associated with a substantial increase in O, O, and Η values, and a decrease in the deuterium excess.

View Article and Find Full Text PDF

Massive cyanobacteria blooms occur almost every summer in the Baltic Sea but the capability to quantitatively predict their extent and intensity is poorly developed. Here we analyse statistical relationships between multi-decadal satellite-derived time series of the frequency of cyanobacteria surface accumulations (FCA) in the central Baltic Sea Proper and a suite of environmental variables. Over the decadal scale (∼5-20 years) FCA was highly correlated (R ∼ 0.

View Article and Find Full Text PDF

Impact of UV radiation on DOM transformation on molecular level using FT-ICR-MS and PARAFAC.

Spectrochim Acta A Mol Biomol Spectrosc

April 2020

Marine Sensor Systems Group, Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, 26382, Wilhelmshaven, Germany; Marine Perception Research Group, German Research Center for Artifical Intelligence (DFKI), 26129 Oldenburg, Germany.

Dissolved organic matter (DOM) is an omnipresent constituent of natural water bodies. Reuse and transformation of DOM compounds in the water column is driven by physicochemical and biological processes leading to the production of refractory DOM. Typically, breakdown of DOM chemical compounds into smaller or more condensed fragments is triggered by ultraviolet (UV) radiation.

View Article and Find Full Text PDF

As microplastic pollution evolved to a well-established research field, microplastic scientists started to explore new avenues in the field. Yet, while a multitude of different types of microplastics (microbeads, fibres, fragments) have been well-documented in microplastic literature, our analysis of this literature shows that glitter particles have been overlooked by the field. However, due to the presence of glitter-based research in forensic science, we explore the idea that glitter may have the potential to act as "flag items" - or markers - of a likely source, due to the often complex and individual composition of glitter particles compared to traditional microplastics, such as microbeads.

View Article and Find Full Text PDF

In conventional textbook thermodynamics, entropy is a quantity that may be calculated by different methods, for example experimentally from heat capacities (following Clausius) or statistically from numbers of microscopic quantum states (following Boltzmann and Planck). It had turned out that these methods do not necessarily provide mutually consistent results, and for equilibrium systems their difference was explained by introducing a residual zero-point entropy (following Pauling), apparently violating the Nernst theorem. At finite temperatures, associated statistical entropies which count microstates that do not contribute to a body's heat capacity, differ systematically from Clausius entropy, and are of particular relevance as measures for metastable, frozen-in non-equilibrium structures and for symbolic information processing (following Shannon).

View Article and Find Full Text PDF

Uneven host cell growth causes lysogenic virus induction in the Baltic Sea.

PLoS One

March 2020

Department of Limnology and Bio-Oceanography, Center of Functional Ecology, University of Vienna, Vienna, Austria.

In the Baltic Sea redoxcline, lysogenic viruses infecting prokaryotes have rarely been detected using the commonly used inducing agent mitomycin C. However, it is well known that not all viruses are induceable by mitomycin C and growing evidence suggests that changes in trophic conditions may trigger the induction of lysogenic viruses. We hypothesized that using antibiotics to simulate a strong change in trophic conditions for antibiotica-resistant cells due to reduced competition for resources might lead to the induction of lysogenic viruses into the lytic cycle within these cells.

View Article and Find Full Text PDF

Do beachrocks affect microplastic deposition on the strandline of sandy beaches?

Mar Pollut Bull

April 2019

Laboratory of Ecology and Management of Estuarine and Coastal Environments, Federal University of Pernambuco (UFPE), Av. Da Arquitetura s/n, 500740-540 Recife, PE, Brazil.

The strandline is one of the first deposition habitats of microplastics before they are integrated to the beach as a standing stock or finally removed. Beaches, entirely or partially protected by beachrocks, have different sediment dynamics and therefore may present variation in microplastic deposition. The aim of this work was to test if protected and unprotected (i.

View Article and Find Full Text PDF

Microbial life below the seafloor has changed over geological time, but these changes are often not obvious, as they are not recorded in the sediment. Sulphur (S) isotope values in pyrite extracted from a Plio- to Holocene sequence of the Peru Margin (Ocean Drilling Program, ODP, Site 1229) show a down-core pattern that correlates with the pattern of carbon (C) isotopes in diagenetic dolomite. Early formation of the pyrite is indicated by the mineralogical composition of iron, showing a high degree of pyritization throughout the sedimentary sequence.

View Article and Find Full Text PDF

Seepage of methane (CH4) on land and in the sea may significantly affect Earth's biogeochemical cycles. However processes of CH4 generation and consumption, both abiotic and microbial, are not always clear. We provide new geochemical and isotope data to evaluate if a recently discovered CH4 seepage from the shallow seafloor close to the Island of Elba (Tuscany) and two small islands nearby are derived from abiogenic or biogenic sources and whether carbonate encrusted vents are the result of microbial or abiotic processes.

View Article and Find Full Text PDF

Earthquake-induced structural deformations enhance long-term solute fluxes from active volcanic systems.

Sci Rep

October 2018

Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Univ Paris Diderot, UMR, 7154 CNRS, Paris, France.

Evidence for relationships between seismotectonic activity and dissolved weathering fluxes remains limited. Motivated by the occurrence of new springs emerging after the 2016 Kumamoto earthquake and supported by historical groundwater data, this study focuses on the long-term effect of near-surface structural deformation on the contribution of deep, highly saline fluids to the solute fluxes from the Aso caldera, Kyushu, Japan. Available hydrologic and structural data suggest that concentrated, over-pressured groundwaters migrate to the surface when new hydraulic pathways open during seismic deformation.

View Article and Find Full Text PDF

Iron sulfide formation in young and rapidly-deposited permeable sands at the land-sea transition zone.

Sci Total Environ

February 2019

Hydrogeology and Landscape Hydrology Group, Institute for Biology and Environmental Sciences, Carl von Ossietzky University of Oldenburg, Ammerländer Heerstraße 114-118, D-26129 Oldenburg, Germany.

Organic-poor, permeable quartz sands are often present at land-sea transition zones in coastal regions. Yet, the biogeochemical cycles of carbon, sulfur, and iron are not well studied here. The aim of this work was, therefore, to improve our understanding regarding the chemical processes in these prominent coastal sediments.

View Article and Find Full Text PDF