473 results match your criteria: "Latvian Biomedical Research and Study Centre.[Affiliation]"

The present study evaluates the mold fungal resistance of newly developed loose-fill thermal insulation materials made of wheat straw, corn stalk and water reed. Three distinct techniques for the processing of raw materials were used: mechanical crushing (Raw, ≤20 mm), thermo-mechanical pulping (TMP) with 4% NaOH and steam explosion pulping (SEP). An admixture of boric acid (8%) and tetraborate (7%) was applied to all processed substrates due to their anti-fungal properties.

View Article and Find Full Text PDF

Heavy metal (HMe) pollution in regions with mining and metallurgy activities is known to be a serious environmental problem worldwide. Hydrological processes contribute to the dissemination of HMes (drainage, precipitation, flow rate). The aim of the present study is to investigate the microbial community structure in ten river sediments sampled in different regions of East Kazakhstan, which are contaminated with HMes.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) hold immense potential for various biomedical applications, including diagnostics, drug delivery, and regenerative medicine. Nevertheless, the current methodologies for isolating EVs present significant challenges, such as complexity, time consumption, and the need for bulky equipment, which hinders their clinical translation. To address these limitations, we aimed to develop an innovative microfluidic system based on cyclic olefin copolymer-off-stoichiometry thiol-ene (COC-OSTE) for the efficient isolation of EVs from large-volume samples in a continuous manner.

View Article and Find Full Text PDF

Long COVID, or post-acute sequelae of SARS-CoV-2 infection (PASC), can manifest as long-term symptoms in multiple organ systems, including respiratory, cardiovascular, neurological, and metabolic systems. In patients with severe COVID-19, immune dysregulation is significant, and the relationship between metabolic regulation and immune response is of great interest in determining the pathophysiological mechanisms. We aimed to characterize the metabolomic footprint of recovering severe COVID-19 patients at three consecutive timepoints and compare metabolite levels to controls.

View Article and Find Full Text PDF

: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 is the new coronavirus that caused the coronavirus disease 2019 (COVID-19) outbreak. Studies have increasingly reported the involvement of organs outside the respiratory system, including the gastrointestinal tract. Data on the association between COVID-19 and ulcerative colitis (UC) are lacking.

View Article and Find Full Text PDF

: Danon disease is a multisystemic disorder associated with variants in the gene, mainly affecting the cardiac muscle. Here, we report a multigenerational family from Latvia with two male patients, hemizygous for a novel splice-affecting variant c.928+3A>G.

View Article and Find Full Text PDF

Numerous type 2 diabetes (T2D) polygenic risk scores (PGSs) have been developed to predict individuals' predisposition to the disease. An independent assessment and verification of the best-performing PGS are warranted to allow for a rapid application of developed models. To date, only 3% of T2D PGSs have been evaluated.

View Article and Find Full Text PDF

The analysis of small RNA sequencing data across a range of biofluids is a significant research area, given the diversity of RNA types that hold potential diagnostic, prognostic, and predictive value. The intricate task of segregating the complex mixture of small RNAs from both human and other species, including bacteria, fungi, and viruses, poses one of the most formidable challenges in the analysis of small RNA sequencing data, currently lacking satisfactory solutions. This study introduces sRNAflow, a user-friendly bioinformatic tool with a web interface designed for the analysis of small RNAs obtained from biological fluids.

View Article and Find Full Text PDF

Since the emergence of the COVID-19 pandemic, the effects of SARS-CoV-2 have been extensively researched. While much is already known about the acute phase of the infection, increasing attention has turned to the prolonged symptoms experienced by a subset of individuals, commonly referred to as long COVID-19 patients. This study aims to delve deeper into the immune landscape of patients with prolonged symptoms by implementing single-cell mRNA analysis.

View Article and Find Full Text PDF

Carbonic anhydrase IX (CAIX) is a cancer-associated membrane protein frequently overexpressed in hypoxic solid tumours leading to enhanced tumour cell survival and invasion, and it has been proposed to be an attractive tumour-specific molecule for antibody-mediated targeting. This study aimed to generate a virus-like particle (VLP)-based CAIX vaccine candidate and evaluate its efficacy in a mouse model of breast cancer. The prototype murine vaccine was developed based on the ssRNA bacteriophage Qbeta VLPs with chemically coupled murine CAIX protein catalytic domains on their surfaces.

View Article and Find Full Text PDF

The gut microbiome plays a pivotal role in the modulation of host responses during viral infections, and recent studies have underscored its significance in the context of coronavirus disease 2019 (COVID-19). We aimed to investigate the dynamics and compositional changes in the gut microbiome of COVID-19 patients, addressing both the acute phase and the recovery process, with a particular focus on the emergence of post-COVID-19 conditions. Involving 146 COVID-19 patients and 110 healthy controls, this study employed a shotgun metagenomics approach for cross-sectional and longitudinal analyses with one- and three-month follow-ups.

View Article and Find Full Text PDF

The endocardium and cardiac valves undergo severe impact during infective endocarditis (IE), and the formation of vegetation places IE patients at a heightened risk of embolic complications and mortality. The relevant literature indicates that 50% of IE cases exhibit structurally normal cardiac valves, with no preceding history of heart valve disease. Gram-positive cocci emerge as the predominant causative microorganisms in IE, while Gram-negative spp.

View Article and Find Full Text PDF

Immunomodulatory properties of bacteriophage derived dsRNA of different size and their use as anticancer vaccine adjuvants.

Vaccine

January 2024

Laboratory of Immunology, National Cancer Institute, Santariškių g. 1, LT-08660 Vilnius, Lithuania; Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223 Vilnius, Lithuania. Electronic address:

Dendritic cell (DC) based immunotherapy is one of the strategies to combat cancer invoking a patient's immune system. This form of anticancer immunotherapy employs adjuvants to enhance the immune response, triggering mechanisms of innate immunity and thus increase immunotherapeutic efficiency. A conventional adjuvant for DCs maturation during production of anticancer vaccines is bacterial LPS.

View Article and Find Full Text PDF

Background: The causative agent of the COVID-19 pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is of zoonotic origin and has shown reverse zoonotic transmissibility.

Objectives: The aim of this cross-sectional study was to investigate the serological and molecular prevalence of SARS-CoV-2 infection in the domestic cat (Felis catus) population from Latvia in natural conditions and subsequently perform viral genome analysis.

Methods: Oropharyngeal and rectal swabs and blood samples were collected from 273 domestic cats during the second wave of COVID-19 infection in Latvia.

View Article and Find Full Text PDF

Prostate cancer (PCa), one of the most prevalent malignancies affecting men worldwide, presents significant challenges in terms of early detection, risk stratification, and active surveillance. In recent years, liquid biopsies have emerged as a promising non-invasive approach to complement or even replace traditional tissue biopsies. Extracellular vesicles (EVs), nanosized membranous structures released by various cells into body fluids, have gained substantial attention as a source of cancer biomarkers due to their ability to encapsulate and transport a wide range of biological molecules, including RNA.

View Article and Find Full Text PDF

Ryegrass mottle virus (RGMoV; genus: Sobemovirus) is a single-stranded positive RNA virus with a 30 nm viral particle size. It exhibits T = 3 symmetry with 180 coat protein (CP) subunits forming a viral structure. The RGMoV genome comprises five open reading frames that encode P1, Px, a membrane-anchored 3C-like serine protease, a viral genome-linked protein, P16, an RNA-dependent RNA polymerase, and CP.

View Article and Find Full Text PDF
Article Synopsis
  • - Lyme disease is caused by a type of bacteria called Borrelia burgdorferi, which enters the human body through infected tick bites and has surface proteins that help it survive and spread in hosts.
  • - This study focuses on a specific outer surface protein called BB0158, which is part of a gene family consisting of five proteins, and has been analyzed to understand its 3D structure and role in the bacteria.
  • - The research reveals that BB0158 forms a unique structure known as a domain-swapped dimer, providing insights into the proteins of Borrelia burgdorferi that are essential for invoking Lyme disease.
View Article and Find Full Text PDF

The gut microbiome is a versatile system regulating numerous aspects of host metabolism. Among other traits, variations in the composition of gut microbial communities are related to blood lipid patterns and hyperlipidaemia, yet inconsistent association patterns exist. This study aims to assess the relationships between the composition of the gut microbiome and variations in lipid profiles among healthy adults.

View Article and Find Full Text PDF

Bacterial microcompartments (BMCs) are organelle-like structures in bacteria that facilitate a wide range of enzymatic reactions. The microcompartment shell contains an encapsulated enzymatic core and, in contrast to phospholipid-based eukaryotic organelle membranes, has a pseudoicosahedral shape composed of BMC-H, BMC-T, and BMC-P proteins with conserved structures. This semipermeable microcompartment shell delineates the enzymatic core assemblies and the intermediates from the rest of the cell.

View Article and Find Full Text PDF

Despite rapid improvements in the accessibility of whole-genome sequencing (WGS), understanding the extent of human genetic variation is limited by the scarce availability of genome sequences from underrepresented populations. Developing the population-scale reference database of Latvian genetic variation may fill the gap in European genomes and improve human genomics research. In this study, we analysed a high-coverage WGS dataset comprising 502 individuals selected from the Genome Database of the Latvian Population.

View Article and Find Full Text PDF

ATP-dependent proteases FtsH are conserved in bacteria, mitochondria, and chloroplasts, where they play an essential role in degradation of misfolded/unneeded membrane and cytosolic proteins. It has also been demonstrated that the FtsH homologous protein BB0789 is crucial for mouse and tick infectivity and in vitro growth of the Lyme disease-causing agent Borrelia burgdorferi. This is not surprising, considering B.

View Article and Find Full Text PDF

A unique borrelial protein facilitates microbial immune evasion.

mBio

October 2023

Department of Veterinary Medicine, University of Maryland , College Park, Maryland, USA.

Lyme disease is a major tick-borne infection caused by a bacterial pathogen called , which is transmitted by ticks and affects hundreds of thousands of people every year. These bacterial pathogens are distinct from other genera of microbes because of their distinct features and ability to transmit a multi-system infection to a range of vertebrates, including humans. Progress in understanding the infection biology of Lyme disease, and thus advancements towards its prevention, are hindered by an incomplete understanding of the microbiology of , partly due to the occurrence of many unique borrelial proteins that are structurally unrelated to proteins of known functions yet are indispensable for pathogen survival.

View Article and Find Full Text PDF

Background: Virus-like particle (VLP) Peanut is a novel immunotherapeutic vaccine candidate for the treatment of peanut allergy. The active pharmaceutical ingredient represents cucumber mosaic VLPs (CuMV -VLPs) that are genetically fused with one of the major peanut allergens, Ara h 2 (CuMV -Ara h 2). We previously demonstrated the immunogenicity and the protective capacity of VLP Peanut-based immunization in a murine model for peanut allergy.

View Article and Find Full Text PDF

Introduction: Research findings of the past decade have highlighted the gut as the main site of action of the oral antihyperglycemic agent metformin despite its pharmacological role in the liver. Extensive evidence supports metformin's modulatory effect on the composition and function of gut microbiota, nevertheless, the underlying mechanisms of the host responses remain elusive. Our study aimed to evaluate metformin-induced alterations in the intestinal transcriptome profiles at different metabolic states.

View Article and Find Full Text PDF