4 results match your criteria: "Lanzhou University Lanzhou 730000 P. R. China liangym@lzu.edu.cn.[Affiliation]"

Transition-metal-catalyzed hydroarylation of unactivated alkenes metal hydride hydrogen atom transfer (MHAT) is an attractive approach for the construction of C(sp)-C(sp) bonds. However, this kind of reaction focuses mainly on using reductive hydrosilane as a hydrogen donor. Here, a novel photoinduced Co/Ni-cocatalyzed Markovnikov hydroarylation of unactivated alkenes with aryl bromides using protons as a hydrogen source has been developed.

View Article and Find Full Text PDF

The radical-mediated difunctionalization of 1,3-enynes facilitates rapid access to structurally diverse allenes and dienes. Whereas, owing to the existence of multiple active sites in conjugated 1,3-enynes, regulating selectivity in difunctionalized addition a single transition-metal-catalyzed radical tandem process remains elusive. Herein, we disclose an intriguing protocol of substrate-controlled nickel-catalyzed regiodivergent sulfonylarylation of 1,3-enynes with the assistance of sulfonyl chlorides and arylboronic acids.

View Article and Find Full Text PDF

A novel palladium-catalyzed spirocyclization through sequential Narasaka-Heck cyclization, C-H activation and [4 + 2] annulation has been developed. In this reaction, cheap and readily available 2-chlorobenzoic acid or ethyl phenylpropiolate was employed as the C2 insertion unit to react with γ,δ-unsaturated oxime ester. The key step in this transformation is the regioselective insertion of the C2 synthon into the spiro-palladacycle intermediate that is formed by the δ-C-H activation process, thereby efficiently assembling a series of spirocyclic pyrrolines with high regiocontrol.

View Article and Find Full Text PDF

This report describes palladium-catalyzed C-H glycosylation and retro Diels-Alder tandem reaction structurally modified norbornadienes (smNBDs). smNBDs were proposed to regulate the reactivity of the aryl-norbornadiene-palladacycle (ANP), including its high chemoselectivity and regioselectivity, which were the key to constructing C2 and C3 unsubstituted C4-glycosidic indoles. The scope of this substrate is extensive; the halogenated six-membered and five-membered glycosides were applied to the reaction smoothly, and -alkyl (primary, secondary and tertiary) C4-glycosidic indoles can also be obtained by this method.

View Article and Find Full Text PDF