257 results match your criteria: "Lane Department of Computer Science and Electrical Engineering; West Virginia University[Affiliation]"

Purpose: To investigate the appearance of choriocapillaris (CC) flow under drusen by comparing long-wavelength (1050 nm) swept-source optical coherence tomography (SS-OCT) angiography with shorter-wavelength (840 nm) spectral-domain (SD) OCT angiography.

Methods: Patients with drusen imaged on both devices on the same day were selected and graded. Ambiguous OCT angiography (OCTA) signal loss was defined as low OCTA signal on the en face OCTA CC image that also had low OCT signal in the corresponding area on the en face OCT CC image and OCT B-scans.

View Article and Find Full Text PDF

Endothelial cells (ECs) lining the blood vessel walls in vivo are constantly exposed to flow, but cultured ECs are often grown under static conditions and exhibit a pro-inflammatory phenotype. Although the development of microfluidic devices has been embraced by engineers over two decades, their biological applications remain limited. A more physiologically relevant in vitro microvessel model validated by biological applications is important to advance the field and bridge the gaps between in vivo and in vitro studies.

View Article and Find Full Text PDF

Connectomics-the study of how neurons wire together in the brain-is at the forefront of modern neuroscience research. However, many connectomics studies are limited by the time and precision needed to correctly segment large volumes of electron microscopy (EM) image data. We present here a semi-automated segmentation pipeline using freely available software that can significantly decrease segmentation time for extracting both nuclei and cell bodies from EM image volumes.

View Article and Find Full Text PDF

Cell migration is one of the crucial steps in many physiological and pathological processes, including cancer development. Our recent studies have shown that carbon nanotubes (CNTs), similarly to asbestos, can induce accelerated cell growth and invasiveness that contribute to their mesothelioma pathogenicity. Malignant mesothelioma is a very aggressive tumor that develops from cells of the mesothelium, and is most commonly caused by exposure to asbestos.

View Article and Find Full Text PDF

Nanotopographical Modulation of Cell Function through Nuclear Deformation.

ACS Appl Mater Interfaces

March 2016

Department of Chemical Engineering, West Virginia University, Morgantown, West Virginia 26506, United States.

Although nanotopography has been shown to be a potent modulator of cell behavior, it is unclear how the nanotopographical cue, through focal adhesions, affects the nucleus, eventually influencing cell phenotype and function. Thus, current methods to apply nanotopography to regulate cell behavior are basically empirical. We, herein, engineered nanotopographies of various shapes (gratings and pillars) and dimensions (feature size, spacing and height), and thoroughly investigated cell spreading, focal adhesion organization and nuclear deformation of human primary fibroblasts as the model cell grown on the nanotopographies.

View Article and Find Full Text PDF

Surface-Based Body Shape Index and Its Relationship with All-Cause Mortality.

PLoS One

August 2016

Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, United States of America.

Background: Obesity is a global public health challenge. In the US, for instance, obesity prevalence remains high at more than one-third of the adult population, while over two-thirds are obese or overweight. Obesity is associated with various health problems, such as diabetes, cardiovascular diseases (CVDs), depression, some forms of cancer, sleep apnea, osteoarthritis, among others.

View Article and Find Full Text PDF

Automated extraction and validation of children's gait parameters with the Kinect.

Biomed Eng Online

December 2015

Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV, USA.

Background: Gait analysis for therapy regimen prescription and monitoring requires patients to physically access clinics with specialized equipment. The timely availability of such infrastructure at the right frequency is especially important for small children. Besides being very costly, this is a challenge for many children living in rural areas.

View Article and Find Full Text PDF

In this paper, we evaluate the control performance of SSVEP (steady-state visual evoked potential)- and P300-based models using Cerebot-a mind-controlled humanoid robot platform. Seven subjects with diverse experience participated in experiments concerning the open-loop and closed-loop control of a humanoid robot via brain signals. The visual stimuli of both the SSVEP- and P300- based models were implemented on a LCD computer monitor with a refresh frequency of 60 Hz.

View Article and Find Full Text PDF

Highly strained films of BiFeMnO (BFMO) grown at very low rates by pulsed laser deposition were demonstrated to exhibit both ferrimagnetism and ferroelectricity at room temperature and above. Magnetisation measurements demonstrated ferrimagnetism ( ∼ 600K), with a room temperature saturation moment ( ) of up to 90 emu/cc (∼ 0.58 /f.

View Article and Find Full Text PDF

A method to analyze low signal-to-noise ratio functional magnetic resonance imaging data.

J Integr Neurosci

September 2015

‡ Departments of Electrical and Computer Engineering and Biomedical Engineering, Center for Neuro-Engineering and Cognitive Science, University of Houston, N308-D2, Houston, TX 77204-4005, USA.

The current practice of using a single, representative hemodynamic response function (canonical HRF) to model functional magnetic resonance imaging (fMRI) data is questionable given the trial-to-trial variability of the brain's responses. In addition, the changes in blood-oxygenation level due to sensory stimulation may be small, especially when auditory stimuli are used. Here we introduce a correlation-based single trial analysis method for fMRI data analysis to deal with the low signal-to-noise (SNR) ratio and variability of the HRF in response to repeated, identical auditory stimuli.

View Article and Find Full Text PDF

A measurement of the Higgs boson mass is presented based on the combined data samples of the ATLAS and CMS experiments at the CERN LHC in the H→γγ and H→ZZ→4ℓ decay channels. The results are obtained from a simultaneous fit to the reconstructed invariant mass peaks in the two channels and for the two experiments. The measured masses from the individual channels and the two experiments are found to be consistent among themselves.

View Article and Find Full Text PDF

In vitro recapitulation of functional microvessels for the study of endothelial shear response, nitric oxide and [Ca2+]i.

PLoS One

February 2016

Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, West Virginia, United States of America.

Microfluidic technologies enable in vitro studies to closely simulate in vivo microvessel environment with complexity. Such method overcomes certain constrains of the statically cultured endothelial monolayers and enables the cells grow under physiological range of shear flow with geometry similar to microvessels in vivo. However, there are still existing knowledge gaps and lack of convincing evidence to demonstrate and quantify key biological features of the microfluidic microvessels.

View Article and Find Full Text PDF

Paper as a platform for sensing applications and other devices: a review.

ACS Appl Mater Interfaces

April 2015

†Department of Mechanical Engineering, The University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, British Columbia V6T 1Z4, Canada.

Paper is a ubiquitous material that has various applications in day to day life. A sheet of paper is produced by pressing moist wood cellulose fibers together. Paper offers unique properties: paper allows passive liquid transport, it is compatible with many chemical and biochemical moieties, it exhibits piezoelectricity, and it is biodegradable.

View Article and Find Full Text PDF

RPI-Pred: predicting ncRNA-protein interaction using sequence and structural information.

Nucleic Acids Res

February 2015

Department of Radiology, Wake Forest University Health Science, Medical Center Boulevard, Winston-Salem, NC 27157, USA

RNA-protein complexes are essential in mediating important fundamental cellular processes, such as transport and localization. In particular, ncRNA-protein interactions play an important role in post-transcriptional gene regulation like mRNA localization, mRNA stabilization, poly-adenylation, splicing and translation. The experimental methods to solve RNA-protein interaction prediction problem remain expensive and time-consuming.

View Article and Find Full Text PDF

mRNA and miRNA regulatory networks reflective of multi-walled carbon nanotube-induced lung inflammatory and fibrotic pathologies in mice.

Toxicol Sci

March 2015

*Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, West Virginia 26506-6070, Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia 26506 and Department of Occupational and Environmental Health Science, School of Public Health, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia 26506-9300

Multi-walled carbon nanotubes (MWCNTs) are known for their transient inflammatory and progressive fibrotic pulmonary effects; however, the mechanisms underlying these pathologies are unknown. In this study, we used time-series microarray data of global lung mRNA and miRNA expression isolated from C57BL/6J mice exposed by pharyngeal aspiration to vehicle or 10, 20, 40, or 80 µg MWCNT at 1, 7, 28, or 56 days post-exposure to determine miRNA and mRNA regulatory networks that are potentially involved in MWCNT-induced inflammatory and fibrotic lung etiology. Using a non-negative matrix factorization method, we determined mRNAs and miRNAs with expression profiles associated with pathology patterns of MWCNT-induced inflammation (based on bronchoalveolar lavage score) and fibrosis (based on Sirius Red staining measured with quantitative morphometric analysis).

View Article and Find Full Text PDF

There is a current interest in reducing the in vivo toxicity testing of nanomaterials in animals by increasing toxicity testing using in vitro cellular assays; however, toxicological results are seldom concordant between in vivo and in vitro models. This study compared global multi-walled carbon nanotube (MWCNT)-induced gene expression from human lung epithelial and microvascular endothelial cells in monoculture and coculture with gene expression from mouse lungs exposed to MWCNT. Using a cutoff of 10% false discovery rate and 1.

View Article and Find Full Text PDF

Integrative analysis of multi-level molecular profiles can distinguish interactions that cannot be revealed based on one kind of data in the analysis of cancer susceptibility and metastasis. DNA copy number variations (CNVs) are common in cancer cells, and their role in cell behaviors and relationship to gene expression (GE) is poorly understood. An integrative analysis of CNV and genome-wide mRNA expression can discover copy number alterations and their possible regulatory effects on GE.

View Article and Find Full Text PDF

Developing an EEG-based on-line closed-loop lapse detection and mitigation system.

Front Neurosci

October 2014

Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego La Jolla, CA, USA ; Department of Bioengineering, Jacobs School of Engineering, University of California San Diego La Jolla, CA, USA ; Center for Advanced Neurological Engineering, Institute of Engineering in Medicine, University of California San Diego La Jolla, CA, USA.

In America, 60% of adults reported that they have driven a motor vehicle while feeling drowsy, and at least 15-20% of fatal car accidents are fatigue-related. This study translates previous laboratory-oriented neurophysiological research to design, develop, and test an On-line Closed-loop Lapse Detection and Mitigation (OCLDM) System featuring a mobile wireless dry-sensor EEG headgear and a cell-phone based real-time EEG processing platform. Eleven subjects participated in an event-related lane-keeping task, in which they were instructed to manipulate a randomly deviated, fixed-speed cruising car on a 4-lane highway.

View Article and Find Full Text PDF

Background: A differential contribution of the right and left amygdalae to affective information processing has been proposed. However, the direction of this lateralization has not been confirmed. In this study, we used a pre- and post-treatment (escitalopram) design to analyze the relative differences between neural activity in the right and left amygdalae during exposure to emotional stimuli in currently depressed patients.

View Article and Find Full Text PDF

An online system for metabolic network analysis.

Database (Oxford)

February 2015

Lane Center for Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15222, USA, Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH 44106, USA and Department of Computer Science, Istanbul Sehir University, Istanbul 34662, Turkey.

Metabolic networks have become one of the centers of attention in life sciences research with the advancements in the metabolomics field. A vast array of studies analyzes metabolites and their interrelations to seek explanations for various biological questions, and numerous genome-scale metabolic networks have been assembled to serve for this purpose. The increasing focus on this topic comes with the need for software systems that store, query, browse, analyze and visualize metabolic networks.

View Article and Find Full Text PDF

Gender recognition from unconstrained and articulated human body.

ScientificWorldJournal

June 2015

Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA.

Gender recognition has many useful applications, ranging from business intelligence to image search and social activity analysis. Traditional research on gender recognition focuses on face images in a constrained environment. This paper proposes a method for gender recognition in articulated human body images acquired from an unconstrained environment in the real world.

View Article and Find Full Text PDF

MIRA: mutual information-based reporter algorithm for metabolic networks.

Bioinformatics

June 2014

Lane Center for Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA 15213 and Department of Electrical Engineering and Computer Science, School of Engineering, Case Western Reserve University, Cleveland, OH, USA 44106.

Motivation: Discovering the transcriptional regulatory architecture of the metabolism has been an important topic to understand the implications of transcriptional fluctuations on metabolism. The reporter algorithm (RA) was proposed to determine the hot spots in metabolic networks, around which transcriptional regulation is focused owing to a disease or a genetic perturbation. Using a z-score-based scoring scheme, RA calculates the average statistical change in the expression levels of genes that are neighbors to a target metabolite in the metabolic network.

View Article and Find Full Text PDF

Kinesthesia in a sustained-attention driving task.

Neuroimage

May 2014

Brain Research Center, National Chiao Tung University, Hsinchu, Taiwan; Institute of Electrical Control Engineering, Department of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, Taiwan; Center for Advanced Neurological Engineering, Institute of Engineering in Medicine, University of California, San Diego, CA, USA. Electronic address:

This study investigated the effects of kinesthetic stimuli on brain activities during a sustained-attention task in an immersive driving simulator. Tonic and phasic brain responses on multiple timescales were analyzed using time-frequency analysis of electroencephalographic (EEG) sources identified by independent component analysis (ICA). Sorting EEG spectra with respect to reaction times (RT) to randomly introduced lane-departure events revealed distinct effects of kinesthetic stimuli on the brain under different performance levels.

View Article and Find Full Text PDF

Efforts have been focused on developing in vitro assays for the study of microvessels because in vivo animal studies are more time-consuming, expensive, and observation and quantification are very challenging. However, conventional in vitro microvessel assays have limitations when representing in vivo microvessels with respect to three-dimensional (3D) geometry and providing continuous fluid flow. Using a combination of photolithographic reflowable photoresist technique, soft lithography, and microfluidics, we have developed a multi-depth circular cross-sectional endothelialized microchannels-on-a-chip, which mimics the 3D geometry of in vivo microvessels and runs under controlled continuous perfusion flow.

View Article and Find Full Text PDF

High-order interactions observed in multi-task intrinsic networks are dominant indicators of aberrant brain function in schizophrenia.

Neuroimage

November 2014

The Mind Research Network, Albuquerque, NM 87106, USA; Computer Science Department, University of New Mexico, USA; Electrical and Computer Engineering Department, University of New Mexico, USA.

Identifying the complex activity relationships present in rich, modern neuroimaging data sets remains a key challenge for neuroscience. The problem is hard because (a) the underlying spatial and temporal networks may be nonlinear and multivariate and (b) the observed data may be driven by numerous latent factors. Further, modern experiments often produce data sets containing multiple stimulus contexts or tasks processed by the same subjects.

View Article and Find Full Text PDF