5 results match your criteria: "Laboratory of Nematology Wageningen University Wageningen The Netherlands.[Affiliation]"
We have profound knowledge on biodiversity on Earth including plants and animals. In the recent decade, we have also increased our understanding on microorganisms in different hosts and the environment. However, biodiversity is not equally well studied among different biodiversity groups and Earth's systems with eukaryotes in freshwater sediments being among the least known.
View Article and Find Full Text PDFPlant-soil feedbacks (PSFs) have been shown to strongly affect plant performance under controlled conditions, and PSFs are thought to have far reaching consequences for plant population dynamics and the structuring of plant communities. However, thus far the relationship between PSF and plant species abundance in the field is not consistent. Here, we synthesize PSF experiments from tropical forests to semiarid grasslands, and test for a positive relationship between plant abundance in the field and PSFs estimated from controlled bioassays.
View Article and Find Full Text PDFPlant species that expand their range in response to current climate change will encounter soil communities that may hinder, allow or even facilitate plant performance. It has been shown repeatedly for plant species originating from other continents that these plants are less hampered by soil communities from the new than from the original range. However, information about the interactions between intra-continental range expanders and soil communities is sparse, especially at community level.
View Article and Find Full Text PDFFunct Ecol
December 2019
Current climate warming enables plant species and soil organisms to expand their range to higher latitudes and altitudes. At the same time, climate change increases the incidence of extreme weather events such as drought. While it is expected that plants and soil organisms originating from the south are better able to cope with drought, little is known about the consequences of their range shifts on soil functioning under drought events.
View Article and Find Full Text PDFMany plant species expand their range to higher latitudes in response to climate change. However, it is poorly understood how biotic interactions in the new range differ from interactions in the original range. Here, in a mesocosm experiment, we analyze nematode community responses in original and new range soils to plant communities with either (a) species native in both the original and new range, (b) range-expanding species related to these natives (related range expanders), or (c) range expanders without native congeneric species in the new range (unrelated range expanders).
View Article and Find Full Text PDF