372 results match your criteria: "Laboratory of Chemistry and Biology of Metals; Université Grenoble Alpes[Affiliation]"

Two-Dimensional Tantalum Carbo-Selenide for Hydrogen Evolution.

ACS Nano

January 2025

Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, United States.

Herein, we report the synthesis of two-dimensional TaSeC (2D-TaSeC) nanosheets using electrochemical lithiation in multilayer TaSeC followed by sonication in deionized water. Multilayer TaSeC was obtained via solid-state synthesis of FeTaSeC followed by chemical etching of Fe. 2D-TaSeC exhibited promising electrocatalytic activity for the hydrogen evolution reaction from water compared to multilayer TaSeC and 2D-TaSe.

View Article and Find Full Text PDF

Antibacterial and Anti-Influenza Activities of -Heterocyclic Carbene-Gold Complexes.

Pharmaceuticals (Basel)

December 2024

Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, Blocco 11, Coppito, 67010 L'Aquila, Italy.

Background/objectives: Infectious diseases represent a serious threat due to rising antimicrobial resistance, particularly among multidrug-resistant bacteria and influenza viruses. Metal-based complexes, such as -heterocyclic carbene-gold (NHC-gold) complexes, show promising therapeutic potential due to their ability to inhibit various pathogens.

Methods: Eight NHC-gold complexes were synthesized and tested for antibacterial activity against , , and for anti-influenza activity in lung and bronchial epithelial cells infected with influenza virus A/H1N1.

View Article and Find Full Text PDF

Metal halide perovskites show promise for next-generation light-emitting diodes, particularly in the near-infrared range, where they outperform organic and quantum-dot counterparts. However, they still fall short of costly III-V semiconductor devices, which achieve external quantum efficiencies above 30% with high brightness. Among several factors, controlling grain growth and nanoscale morphology is crucial for further enhancing device performance.

View Article and Find Full Text PDF

Kelps (Laminariales, Phaeophyceae) are foundation species along Arctic rocky shores, providing the basis for complex ecosystems and supporting a high secondary production. Due to ongoing climate change glacial and terrestrial run-off are currently accelerating, drastically changing physical and chemical water column parameters, e.g.

View Article and Find Full Text PDF

2D Polyamides Enable Self-Healing and Recyclable Elastomers with High Robustness, Toughness, and Crack Resistance via Supramolecular Interactions.

Small

December 2024

Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, College of Material Science and Engineering, Guilin University of Technology, Guilin, Guangxi, 541004, China.

High-performance elastomers with exceptional mechanical properties and self-healing capabilities have garnered significant attention due to their wide range of potential applications. However, designing elastomers that strike a balance between self-healing capabilities and mechanical properties remains a considerable challenge. Inspired by biological cartilage, a highly robust, tough, and crack-resistant self-healing elastomer is presented by incorporating hydrogen-bond-rich 2D polyamide (2DPA) into a poly(urethane-urea) matrix.

View Article and Find Full Text PDF

The geochemical analysis of Gafsa rock phosphate (GRP) revealed relatively high concentrations of essential plant minerals and trace heavy metals (HMs). Environmental contamination factors indicated moderate to very strong HM contamination due to GRP soil amendment. The potential use of the Serratia plymuthica BMA1 strain, which is known for its ability to solubilize GRP, to enhance mineral nutrition in Vicia faba L.

View Article and Find Full Text PDF

PEGylation of indium phosphide quantum dots prevents quantum dot mediated platelet activation.

J Mater Chem B

January 2025

Biomedical Institute for Multimorbidity, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK.

Article Synopsis
  • Quantum dots (QDs) are small semiconductor particles that could improve biomedical imaging and drug delivery, with Indium phosphide QDs covered by zinc sulphide being a more biocompatible option.
  • This study reveals that PEGylating these QDs significantly reduces platelet activation and aggregation, which is important to prevent excessive blood clotting.
  • By decreasing the interaction between QDs and platelets, PEGylation enhances the safety and effectiveness of QDs for use in medical applications.
View Article and Find Full Text PDF

Polycyclic conjugated hydrocarbons have acquired increased interests recently because of their potential applications in electronic devices. On metal surfaces, the selective synthesis of four- and five-membered carbon rings remains challenging due to the presence of diverse reaction pathways. Here, utilizing the same precursor molecule, we successfully achieved substrate-controlled highly selective cycloaddition reactions towards four- and five-membered carbon rings.

View Article and Find Full Text PDF

Durable all inorganic perovskite tandem photovoltaics.

Nature

November 2024

School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, P. R. China.

All-inorganic perovskites prepared by substituting the organic cations (e.g. methylammonium (MA) and formamidinium (FA)) with inorganic cations (e.

View Article and Find Full Text PDF

Study of Endocrine-Disrupting Chemicals in Infant Formulas and Baby Bottles: Data from the European LIFE-MILCH PROJECT.

Molecules

November 2024

Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology (Peptlab) and Centre of Competences in Molecular Diagnostics and Life Sciences (MoD&LS), University of Florence, 50019 Sesto Fiorentino, Italy.

Article Synopsis
  • A study under the European LIFE project is investigating the presence of endocrine-disrupting chemicals (EDCs) in 20 types of infant formulas and in baby bottles and teats, highlighting the risks posed by these chemicals, especially during pregnancy and infancy.* -
  • The study used advanced analytical methods to test for 85 different chemicals, finding low levels of certain harmful substances like phthalates and PAHs in baby products, raising concerns about exposure.* -
  • While some chemicals were absent in accordance with EU regulations in baby bottles, significant levels of EDCs were found in infant formulas, signaling a need for ongoing monitoring and public health measures to protect young children.*
View Article and Find Full Text PDF

A study of the oral bioavailability and biodistribution increase of Nanoencapsulation-driven Delivering radiolabeled anthocyanins.

Food Res Int

December 2024

Department of Food Science and Experimental Nutrition, School of Pharmaceutical Science, University of São Paulo, São Paulo, SP, Brazil; Food Research Center (FoRC), São Paulo, SP, Brazil; Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, SP, Brazil. Electronic address:

Article Synopsis
  • * The study developed a method for radiolabeling anthocyanins and nanoencapsulating them using citrus pectin and lysozyme, resulting in structures that are 190 nm in size and have a consistent spherical shape.
  • * Findings showed that nanoencapsulated anthocyanins are absorbed more effectively than free anthocyanins in mice, with improved delivery to various organs, which may enhance their biological effects and potential medical applications.
View Article and Find Full Text PDF
Article Synopsis
  • * Results showed that phthalocyanines with carboxyl groups have stronger adsorption to TiO compared to SnO, with energy differences of up to 7 eV, due in part to the presence of coordinative and van der Waals interactions in TiO.
  • * Methodologies included optimizing the semiconductor structures and determining the adsorption energies through advanced computational techniques, which are essential for enhancing the efficiency of solar cells.
View Article and Find Full Text PDF

Coplanar Atropochiral 5H-Cyclopenta[2,1-b:3,4-b']dipyridine Ligands: Synthesis and Applications in Asymmetric Ring-Opening Reaction.

Angew Chem Int Ed Engl

January 2025

Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China.

Bipyridines represent a class of ligands renowned for their versatility and efficacy in numerous transition metal-catalyzed reactions. Chiral bipyridine ligands are noted for their distinctive reactivity and stereoselectivity. In this work, we have designed and synthesized a class of bipyridine ligands endowed with an axially chiral scaffold.

View Article and Find Full Text PDF

Bioconversion of pure CO to caproic acid with zero valent iron: Optimizing carbon flux distribution in co-cultures of Acetobacterium woodii and Megasphaera hexanoica.

Bioresour Technol

December 2024

Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN Group, University of La Coruña (UDC), E-15008 La Coruña, Spain. Electronic address:

Acetobacterium woodii and Megasphaera hexanoica were co-cultured for caproic acid (CA) production from lactic acid (LA) and CO. Also, various concentrations (1 g/L, 3 g/L, 5 g/L, and 10 g/L) of Zero Valent Iron (ZVI) were supplied to study its impact on the co-culture system. In flask experiments, 10 g/L LA and 1.

View Article and Find Full Text PDF

Photocatalysis appears as one of the most promising avenues to shift towards sustainable sources of energy, owing to its ability to transform solar light into chemical energy, production of chemical fuels oxygen evolution (OER) and CO reduction (CORR) reactions. Ti metal-organic frameworks (MOFs) and graphitic carbon nitride derivatives, poly-heptazine imides (PHI) are appealing CORR and OER photo-catalysts respectively. Engineering of an innovative Z-scheme heterojunction by assembling a Ti-MOF and PHI offers an unparalleled opportunity to mimick an artificial photosynthesis device for dual CORR/OER catalysis.

View Article and Find Full Text PDF

Energy conversion and pollutant degradation are critical for advancing sustainable technologies, yet they often encounter challenges related to charge recombination and efficiency limitations. This study explores iodine-doped TiO nanoparticles as a potential solution for enhancing both energy conversion and pollutant degradation. The nanoparticles were synthesized via the sol-gel method with varying iodine precursor concentrations (0.

View Article and Find Full Text PDF

Quantifying the conductivity of a single polyene chain by lifting with an STM tip.

Nat Commun

August 2024

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China.

Conjugated polymers are promising candidates for molecular wires in nanoelectronics, with flexibility in mechanics, stability in chemistry and variety in electrical conductivity. Polyene, as a segment of polyacetylene, is a typical conjugated polymer with straightforward structure and wide-range adjustable conductance. To obtain atomic scale understanding of charge transfer in polyene, we have measured the conductance of a single polyene-based molecular chain via lifting it up with scanning tunneling microscopy tip.

View Article and Find Full Text PDF

To analyze the mechanism of copper accumulation in the marine alga , it was cultivated with 10 μM of copper, with 10 μM of copper and increasing concentrations of a sulfide donor (NaHS) for 0 to 7 days, and with 10 μM of copper and a concentration of the sulfide acceptor (hypotaurine) for 5 days. The level of intracellular copper was determined as well as the level of glutathione (GSH) and phytochelatins (PCs) and the expression of metallothioneins (UcMTs). The level of intracellular copper in the algae treated with copper increased at day 1, slightly increased until day 5 and remained unchanged until day 7.

View Article and Find Full Text PDF

Lead-free CsCuI metal halides have garnered significant attention recently due to their non-toxic properties and deep-blue emission. However, their relatively low photoluminescence quantum efficiency and poor stability have limited their applications. In this work, sodium iodide (NaI) is used to facilitate the synthesis of CsCuI nanocrystals (NCs), demonstrating improved photoluminescence intensity, photoluminescence quantum yield, and stability.

View Article and Find Full Text PDF

The tailings dump of Barraxiutta (Sardinia, Italy) contains considerable concentrations of heavy metals and, consequently, is scarcely colonized by plants. However, wild populations of the liverwort Lunularia cruciata (L.) Dum.

View Article and Find Full Text PDF

Exfoliation of graphite and the discovery of the unique properties of graphene─graphite's single layer─have raised significant attention to layered compounds as potential precursors to 2D materials with applications in optoelectronics, spintronics, sensors, and solar cells. In this work, a new orthorhombic polymorph of yttrium bromide, 16-YBr was synthesized from yttrium and CBr in a laser-heated diamond anvil cell at 45 GPa and 3000 K. The structure of 16-YBr was solved and refined using in situ synchrotron single-crystal X-ray diffraction.

View Article and Find Full Text PDF

In situ cancer vaccination is an attractive strategy that stimulates protective antitumor immunity. Cytotoxic T lymphocytes (CTLs) are major mediators of the adaptive immune defenses, with critical roles in antitumor immune response and establishing immune memory, and are consequently extremely important for in situ vaccines to generate systemic and lasting antitumor efficacy. However, the dense extracellular matrix and hypoxia in solid tumors severely impede the infiltration and function of CTLs, ultimately compromising the efficacy of in situ cancer vaccines.

View Article and Find Full Text PDF

Stretchable Tissue-Like Gold Nanowire Composites with Long-Term Stability for Neural Interfaces.

Small

October 2024

Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 602 21, Sweden.

Soft and stretchable nanocomposites can match the mechanical properties of neural tissue, thereby minimizing foreign body reactions to provide optimal stimulation and recording specificity. Soft materials for neural interfaces should simultaneously fulfill a wide range of requirements, including low Young's modulus (<<1 MPa), stretchability (≥30%), high conductivity (>> 1000 S cm), biocompatibility, and chronic stability (>> 1 year). Current nanocomposites do not fulfill the above requirements, in particular not the combination of softness and high conductivity.

View Article and Find Full Text PDF

Aggregation of the human islet amyloid polypeptide (hIAPP) contributes to the development and progression of Type 2 Diabetes (T2D). hIAPP aggregates within a few hours at few micromolar concentration in vitro but exists at millimolar concentrations in vivo. Natively occurring inhibitors of hIAPP aggregation might therefore provide a model for drug design against amyloid formation associated with T2D.

View Article and Find Full Text PDF

Synthesis of LaCN, TbCN, CeCN, and TbCN Polycarbonitrides at Megabar Pressures.

J Am Chem Soc

July 2024

Centre for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh, EH9 3FD Edinburgh, United Kingdom.

Inorganic ternary metal-C-N compounds with covalently bonded C-N anions encompass important classes of solids such as cyanides and carbodiimides, well known at ambient conditions and composed of [CN] and [CN] anions, as well as the high-pressure formed guanidinates featuring [CN] anion. At still higher pressures, carbon is expected to be 4-fold coordinated by nitrogen atoms, but hitherto, such CN-built anions are missing. In this study, four polycarbonitride compounds (LaCN, TbCN, CeCN, and TbCN) are synthesized in laser-heated diamond anvil cells at pressures between 90 and 111 GPa.

View Article and Find Full Text PDF