23 results match your criteria: "Laboratory affiliated to Institute Pasteur Italia- Cenci Bolognetti Foundation[Affiliation]"

Background: Acinetobacter baumannii poses a significant threat globally, causing infections primarily in healthcare settings, with high mortality rates. Its adaptability to antibiotic resistance and tolerance to various stresses, including reactive oxygen species (ROS), contribute to its persistence in healthcare environments. Previous evidence suggested that the periplasmic heat shock protein, HslJ-like protein (ABUW_2868), could be involved in oxidative stress defense in A.

View Article and Find Full Text PDF
Article Synopsis
  • Carbapenemase-producing bacteria, particularly KPC-3-producing sequence type (ST) 512, pose a significant global health threat, with increasing resistance to advanced treatments like ceftazidime/avibactam (CZA).
  • This study analyzed three isolates from a single patient over 78 days, including two that originated from a liver abscess, focusing on their antimicrobial resistance and genetic characteristics.
  • The final isolate, hmv-318Kp, demonstrated CZA resistance and a hypermucoviscous phenotype due to specific genetic mutations, indicating an evolution of this strain in terms of infectivity and resistance mechanisms.
View Article and Find Full Text PDF

Acinetobacter baumannii is a critical opportunistic pathogen associated with nosocomial infections. The high rates of antibiotic-resistance acquisition make most antibiotics ineffective. Thus, new medical countermeasures are urgently needed.

View Article and Find Full Text PDF

In this paper, we demonstrated that apyrase is released within the host cell cytoplasm during infection to target the intracellular ATP pool. By degrading intracellular ATP, apyrase contributes to prevent caspases activation, thereby inhibiting the activation of pyroptosis in infected cells. Our results show, for the first time, that apyrase is involved in the modulation of host cell survival, thereby aiding this pathogen to dampen the inflammatory response.

View Article and Find Full Text PDF

Background: Atopic dermatitis (AD) is a chronic inflammatory skin condition whose pathogenesis involves genetic predisposition, epidermal barrier dysfunction, alterations in the immune responses and microbial dysbiosis. Clinical studies have shown a link between and the pathogenesis of AD, although the origins and genetic diversity of colonizing patients with AD is poorly understood. The aim of the study was to investigate if specific clones might be associated with the disease.

View Article and Find Full Text PDF

Bacterial small RNAs (sRNAs) research has accelerated over the past decade, boosted by advances in RNA-seq technologies and methodologies for capturing both protein-RNA and RNA-RNA interactions. The emerging picture is that these regulatory sRNAs play important roles in controlling complex physiological processes and are required to survive the antimicrobial challenge. In recent years, the RNA content of OMVs/EVs has also gained increasing attention, particularly in the context of infection.

View Article and Find Full Text PDF

: spp. third-stage larvae (L3) are the causative agents of human zoonosis called anisakiasis. The accidental ingestion of L3 can cause acute and chronic inflammation at the gastric, intestinal, or ectopic levels.

View Article and Find Full Text PDF

Since the non-coding control region (NCCR) and microRNA (miRNA) could represent two different and independent modalities of regulating JC polyomavirus (JCPyV) replication at the transcriptional and post-transcriptional levels, the interplay between JC viral load based on NCCR architecture and miRNA levels, following JCPyV infection with archetypal and rearranged ()-NCCR JCPyV variants, was explored in COS-7 and SVGp12 cells infected by different JCPyV strains. Specifically, the involvement of JCPyV miRNA in regulating viral replication was investigated for the archetypal CY strain-which is the transmissible form-and for the rearranged MAD-1 strain, which is the first isolated variant from patients with progressive multifocal leukoencephalopathy. The JCPyV DNA viral load was low in cells infected with CY compared with that in MAD-1-infected cells.

View Article and Find Full Text PDF

In recent decades, emerged as a major infective menace in healthcare settings due to scarce therapeutic options to treat infections. Therefore, undertaking genome comparison analyses of multi-resistant strains could aid the identification of key bacterial determinants to develop innovative anti-virulence approaches. Following genome sequencing, we performed a molecular characterization of key genes and genomic comparison of two strains, #36 and #150, with selected reference genomes.

View Article and Find Full Text PDF

Urinary tract infections (UTIs) are a major concern in public health. The prevalent uropathogenic bacterium in healthcare settings is Escherichia coli. The increasing rate of antibiotic-resistant strains demands studies to understand E.

View Article and Find Full Text PDF

Markers of JC polyomavirus (JCPyV) activity can be used to evaluate the risk of progressive multifocal leukoencephalopathy (PML) in treated multiple sclerosis (MS) patients. The presence of JCPyV DNA and microRNA (miR-J1-5p), the anti-JCV index and the sequence of the non-coding control region (NCCR) in urine and plasma were determined in 42 MS subjects before treatment (T0), 6 months (T6) and 12 months (T12) after natalizumab, ocrelizumab, fingolimod or dimethyl-fumarate administration and in 25 healthy controls (HC). The number of MS patients with viruria increased from 43% at T0 to 100% at T12, whereas it remained similar for the HC group (35-40%).

View Article and Find Full Text PDF

Background: Progressive multifocal leukoencephalopathy (PML) caused by the JC virus is the main limitation to the use of disease modifying therapies for treatment of multiple sclerosis (MS).

Methods: To assess the PML risk in course of ocrelizumab, urine and blood samples were collected from 42 MS patients at baseline (T0), at 6 (T2) and 12 months (T4) from the beginning of therapy. After JCPyV-DNA extraction, a quantitative-PCR (Q-PCR) was performed.

View Article and Find Full Text PDF

The presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been recently demonstrated in the sputum or saliva, suggesting how the shedding of viral RNA outlasts the end of symptoms. Recent data from transcriptome analysis show that the oral cavity mucosa harbors high levels of angiotensin-converting enzyme 2 (ACE2) and transmembrane protease, serine 2 (TMPRSS2), highlighting its role as a double-edged sword for SARS-CoV-2 body entrance or interpersonal transmission. Here, we studied the oral microbiota structure and inflammatory profile of 26 naive severe coronavirus disease 2019 (COVID-19) patients and 15 controls by 16S rRNA V2 automated targeted sequencing and magnetic bead-based multiplex immunoassays, respectively.

View Article and Find Full Text PDF

Gram-Negative Bacteria Holding Together in a Biofilm: The Way.

Microorganisms

June 2021

Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, IRCCS, 00166 Rome, Italy.

Bacterial biofilms are a serious public-health problem worldwide. In recent years, the rates of antibiotic-resistant Gram-negative bacteria associated with biofilm-forming activity have increased worrisomely, particularly among healthcare-associated pathogens. is a critically opportunistic pathogen, due to the high rates of antibiotic resistant strains causing healthcare-acquired infections (HAIs).

View Article and Find Full Text PDF

COVID-19 is without any doubt the worst pandemic we have faced since the H1N1 virus outbreak. Even if vaccination against SARS-CoV-2 infection is becoming increasingly available, a more feasible approach for COVID-19 prevention and therapy is still needed. Evidence of a pathological link between metabolic diseases and severe forms of COVID-19 has stimulated critical reflection and new considerations.

View Article and Find Full Text PDF

is regarded as a life-threatening pathogen associated with community-acquired and nosocomial infections, mainly pneumonia. The rise in the number of antibiotic-resistant strains reduces effective therapies and increases mortality. Bacterial comparative genomic studies have unraveled the innate and acquired virulence factors of These virulence factors are involved in antibiotic resistance, environmental persistence, host-pathogen interactions, and immune evasion.

View Article and Find Full Text PDF

Multidrug-resistant is regarded as a life-threatening pathogen mainly associated with nosocomial and community-acquired pneumonia. Here, we show that can bind the human carcinoembryonic antigen-related cell adhesion molecule (CEACAM) receptors CEACAM1, CEACAM5, and CEACAM6. This specific interaction enhances internalization in membrane-bound vacuoles, promptly decorated with Rab5, Rab7, and lipidated microtubule-associated protein light chain 3 (LC3).

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent of the COVID-19 pandemic. Although other diagnostic methods have been introduced, detection of viral genes on oro- and nasopharyngeal swabs by reverse-transcription real time-PCR (rRT-PCR) assays is still the gold standard. Efficient viral RNA extraction is a prerequisite for downstream performance of rRT-PCR assays.

View Article and Find Full Text PDF

Over the past two decades, there have been two major outbreaks where the crossover of animal to humans has resulted in severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV). In December 2019, a global public health concern started with the emergence of a new strain of coronavirus (SARS-CoV-2 or 2019 novel coronavirus, 2019-nCoV) which has rapidly spread all over the world from its origin in Wuhan, China. SARS-CoV-2 belongs to the genus, which includes human SARS-CoV, MERS and two other human coronaviruses (HCoVs), HCoV-OC43 and HCoV-HKU1.

View Article and Find Full Text PDF

Over the past decade, short non-coding microRNAs (miRNAs), including circulating and fecal miRNAs have emerged as important modulators of various cellular processes by regulating the expression of target genes. Recent studies revealed the role of miRNAs as powerful biomarkers in disease diagnosis and for the development of innovative therapeutic applications in several human conditions, including intestinal diseases. In this review, we explored the literature and summarized the role of identified dysregulated fecal miRNAs in intestinal diseases, with particular focus on colorectal cancer (CRC) and celiac disease (CD).

View Article and Find Full Text PDF

Chaperone-usher fimbrial adhesins are powerful weapons against the uropathogens that allow the establishment of urinary tract infections (UTIs). As the antibiotic therapeutic strategy has become less effective in the treatment of uropathogen-related UTIs, the anti-adhesive molecules active against fimbrial adhesins, key determinants of urovirulence, are attractive alternatives. The best-characterized bacterial adhesin is FimH, produced by uropathogenic (UPEC).

View Article and Find Full Text PDF

The first step in differentiation of pluripotent stem cell toward endoderm-derived cell/organ is differentiation to definitive endoderm (DE) which is the central issue in developmental biology. Based on several evidences, we hypothesized that activin-A optimization as well as replacement of fetal bovine serum (FBS) with knockout serum replacement (KSR) is important for differentiation of induced pluripotent stem cell (iPSC) line into DE. Therefore, a stepwise differentiation protocol was applied on R1-hiPSC1 cell line.

View Article and Find Full Text PDF

d-Mannose Treatment neither Affects Uropathogenic Properties nor Induces Stable FimH Modifications.

Molecules

January 2020

IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy.

Urinary tract infections (UTIs) are mainly caused by uropathogenic (UPEC). Acute and recurrent UTIs are commonly treated with antibiotics, the efficacy of which is limited by the emergence of antibiotic resistant strains. The natural sugar d-mannose is considered as an alternative to antibiotics due to its ability to mask the bacterial adhesin FimH, thereby preventing its binding to urothelial cells.

View Article and Find Full Text PDF