15 results match your criteria: "Laboratoire propre du CNRS (UPR 2357) conventionné avec l'Université Louis-Pasteur (Strasbourg 1)[Affiliation]"

At the onset of mitosis, microtubules form a bipolar spindle around the prophase nucleus. TPX2 is phosphorylated during mitosis and acts as a spindle assembly factor that nucleates microtubules in the close vicinity of chromosomes, independent of the centrosomes. Furthermore, it activates the kinase Aurora A and targets the Xenopus kinesin-like protein 2 to spindle poles.

View Article and Find Full Text PDF

Plant viruses spread cell-to-cell in infected plants by exploiting plasmodesmata (PD), gatable channels in the cell wall that provide cytoplasmic passageways for the trafficking of informational macromolecules. Since it became known that the intercellular spread of Tobacco mosaic virus (TMV) depends on virus-encoded movement protein (MP), the mechanism by which this protein mediates in the targeting of this virus to PD is subject to intense studies. TMV movement occurs in a non-encapsidated form and thus promises to reveal important host functions involved in the intra-and intercellular trafficking of RNA molecules.

View Article and Find Full Text PDF

The cell-to-cell movement of Tobacco mosaic virus through plasmodesmata (PD) requires virus-encoded movement protein (MP). The MP targets PD through the endoplasmic reticulum (ER)/actin network, whereas the intercellular movement of the viral RNA genome has been correlated with the association of the MP with mobile, microtubule-proximal particles in cells at the leading front of infection as well as the accumulation of the protein on the microtubule network during later infection stages. To understand how the associations of MP with ER and microtubules are functionally connected, we applied multiple marker three-dimensional confocal and time-lapse video microscopies to Nicotiana benthamiana cells expressing fluorescent MP, fluorescent RNA and fluorescent cellular markers.

View Article and Find Full Text PDF

The beet necrotic yellow vein virus (BNYVV) RNA-5-encoded p26 protein is involved in the accentuation of symptoms expression of infected Chenopodium quinoa plants and is capable of transcription activation (TA) in yeast. TA was previously localized within the first 55 residues of the p26 protein. Interestingly, TA did not occur when C-terminally deleted forms of p26 were used.

View Article and Find Full Text PDF

Rhizomania is one of the most devastating sugar beet diseases. It is caused by Beet necrotic yellow vein virus (BNYVV), which induces abnormal rootlet proliferation. To understand better the physiological and molecular basis of the disorder, transcriptome analysis was performed by restriction fragment differential display polymerase chain reaction (RFDD-PCR), which provided differential gene expression profiles between non-infected and infected sugar beet roots.

View Article and Find Full Text PDF

[Micro RNA and viral infections in mammals].

J Soc Biol

December 2015

Institut de Biologie Moléculaire des Plantes, laboratoire propre du CNRS (UPR 2357) conventionné avec l'Université Louis Pasteur, 67084 Strasbourg cedex, France.

RNA silencing plays an important role in development through the action of micro (mi) RNAs that fine tune the expression of a large portion of the genome. But, in plants and insects, it is also a very important player in innate immune responses, especially in antiviral defense. It is now well established that the RNA silencing machinery targets plant as well as insect viruses.

View Article and Find Full Text PDF

The targeting of the movement protein (MP) of Tobacco mosaic virus to plasmodesmata involves the actin/endoplasmic reticulum network and does not require an intact microtubule cytoskeleton. Nevertheless, the ability of MP to facilitate the cell-to-cell spread of infection is tightly correlated with interactions of the protein with microtubules, indicating that the microtubule system is involved in the transport of viral RNA. While the MP acts like a microtubule-associated protein able to stabilize microtubules during late infection stages, the protein was also shown to cause the inactivation of the centrosome upon expression in mammalian cells, thus suggesting that MP may interact with factors involved in microtubule attachment, nucleation, or polymerization.

View Article and Find Full Text PDF

Identification of a novel small Arabidopsis protein interacting with gamma-tubulin complex protein 3.

Cell Biol Int

May 2008

Institut de Biologie Moléculaire des Plantes, laboratoire propre du CNRS, UPR 2357, Conventionné Avec, l'Université Louis Pasteur, Strasbourg 1, 12 rue du Général Zimmer, 67084 Strasbourg, France.

In higher plants, microtubules (MTs) show dynamic structural changes during cell cycle and development progression. A precise control of MT nucleation at dispersed sites is one way used to regulate the cytoskeletal organization. Some gamma-tubulin complex proteins (GCPs) were previously identified in Arabidopsis thaliana (At).

View Article and Find Full Text PDF

[Etiology of the sugar beet rhizomania].

Virologie (Montrouge)

December 2007

Institut de biologie moléculaire des plantes, Laboratoire propre du CNRS (UPR 2357) conventionné avec l'Université Louis-Pasteur (Strasbourg 1), 12, rue du Général-Zimmer, 67084 Strasbourg.

Beet necrotic yellow vein virus is responsible for sugar beet rhizomania. Root proliferation is characteristic of the viral infection and lead to sugar losses. Pathogenicity is particularly linked to the expression of RNA-3-encoded p25.

View Article and Find Full Text PDF

The heterochromatin of many eukaryotes is marked by both histone H3 lysine 9 (H3K9) methylation and DNA cytosine methylation. Several studies have revealed links between these two epigenetic markers. The molecular mechanisms involved in establishment of these links, however, remain largely unknown.

View Article and Find Full Text PDF

The basic structural unit of chromatin is the nucleosome, which consists of 146 bp of DNA wrapped around the histone octamer constituted by two molecules each of histones H2A, H2B, H3 and H4. Nucleosome assembly/disassembly/reassembly processes occur primarily during DNA replication and also during transcription, DNA repair and recombination. Several chromatin-remodeling factors had been previously shown to have pleiotropic roles in different processes of plant growth and development.

View Article and Find Full Text PDF

Organellar nuclear-encoded proteins can be mitochondrial, chloroplastic or localized in both mitochondria and chloroplasts. Most of the determinants for organellar targeting are localized in the N-terminal part of the proteins, which were therefore analyzed in Arabidopsis thaliana. The mitochondrial, chloroplastic and dual N-terminal sequences have an overall similar composition.

View Article and Find Full Text PDF

The p25 protein encoded by Beet necrotic yellow vein virus (BNYVV) RNA-3 is a pathogenicity determinant that has been implicated in symptom exacerbation on Chenopodiaceae hosts. Several p25 variants exist within natural isolates and p25 sequence variation may influence the degree of pathogenicity of such BNYVV isolates. Expression of p25 from natural A- and P-type isolates in the background of B-type BNYVV cDNA clones gave symptom discrepancies when compared to B-type p25 expression.

View Article and Find Full Text PDF

Cell-to-cell communication in plants involves the symplastic trafficking of informational protein and RNA macromolecules through cytoplasmic bridges in the plant cell wall known as plasmodesmata. Viruses exploit this route for the spread of infection and are used as a model to study the mechanisms by which macromolecules are targeted to the pore. Studies using tobacco mosaic virus have led to the identification of host components that participate in plasmodesmal targeting of viral RNA and movement protein.

View Article and Find Full Text PDF

[Interaction between tobacco mosaic virus movement protein and microtubules].

Virologie (Montrouge)

December 2006

Institut de biologie moléculaire des plantes, laboratoire propre du CNRS, (UPR 2357) conventionné avec l'Université Louis-Pasteur (Strasbourg 1), 12, rue du Général Zimmer, 67084 Strasbourg Cedex.

View Article and Find Full Text PDF