275 results match your criteria: "LOEWE Center for Synthetic Microbiology Synmikro; Philipps University Marburg; Marburg[Affiliation]"

At high cell density, swimming bacteria exhibit collective motility patterns, self-organized through physical interactions of a however still debated nature. Although high-density behaviours are frequent in natural situations, it remained unknown how collective motion affects chemotaxis, the main physiological function of motility, which enables bacteria to follow environmental gradients in their habitats. Here, we systematically investigate this question in the model organism Escherichia coli, varying cell density, cell length, and suspension confinement.

View Article and Find Full Text PDF

MoCloFlex: A Modular Yet Flexible Cloning System.

Front Bioeng Biotechnol

October 2019

SYNMIKRO, LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany.

Modern cloning solutions are gradually replacing classical cloning methods. Current systems make use of libraries with predefined DNA parts that are joined by Golden-Gate reactions. However, these systems still suffer from specific inflexibilities and the lack of inter-compatibility.

View Article and Find Full Text PDF

Physcomitrella patens is a bryophyte model plant that is often used to study plant evolution and development. Its resources are of great importance for comparative genomics and evo-devo approaches. However, expression data from Physcomitrella patens were so far generated using different gene annotation versions and three different platforms: CombiMatrix and NimbleGen expression microarrays and RNA sequencing.

View Article and Find Full Text PDF

Structural organization of biocatalytic systems: the next dimension of synthetic metabolism.

Emerg Top Life Sci

November 2019

Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, D-35043 Marburg, Germany.

In natural metabolic networks, more than 2000 different biochemical reactions are operated and spatially and temporally co-ordinated in a reaction volume of <1 µm3. A similar level of control and precision has not been achieved in chemical synthesis, so far. Recently, synthetic biology succeeded in reconstructing complex synthetic in vitro metabolic networks (SIVMNs) from individual proteins in a defined fashion bottom-up.

View Article and Find Full Text PDF

FRET Microscopy in Yeast.

Biosensors (Basel)

October 2019

Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany.

Förster resonance energy transfer (FRET) microscopy is a powerful fluorescence microscopy method to study the nanoscale organization of multiprotein assemblies in vivo. Moreover, many biochemical and biophysical processes can be followed by employing sophisticated FRET biosensors directly in living cells. Here, we summarize existing FRET experiments and biosensors applied in yeasts and , two important models of fundamental biomedical research and efficient platforms for analyses of bioactive molecules.

View Article and Find Full Text PDF

In bacteria-driven microswimmers, i.e., bacteriabots, artificial cargos are attached to flagellated chemotactic bacteria for active delivery with potential applications in biomedical technology.

View Article and Find Full Text PDF

Draft Genome Sequence of Kytococcus schroeteri Strain H01, Isolated from Human Skin.

Microbiol Resour Announc

October 2019

Laboratory of Viability of Microorganisms, FRS Fundamentals of Biotechnology of the Russian Academy of Sciences, Moscow, Russia

strain H01 was isolated from the skin of a healthy volunteer who underwent erythromycin treatment for a skin disorder 1 year prior. The draft genome consists of 2.38 Mb, a G+C content of 73.

View Article and Find Full Text PDF

The genus is a sister-group to the core-group of the Brassicaceae family that includes and the Brassica crops. Thus, is phylogenetically well-placed for the investigation and understanding of genome and trait evolution across the family. We aimed to improve the quality of the reference genome draft version of the annual species Second, we constructed the first genetic map.

View Article and Find Full Text PDF

Bacterial viruses, or bacteriophages, are highly abundant in the biosphere and have a major impact on microbial populations. Many examples of phage interactions with their hosts, including establishment of dormant lysogenic and active lytic states, have been characterized at the level of the individual cell. However, much less is known about the dependence of these interactions on host metabolism and signal exchange within bacterial communities.

View Article and Find Full Text PDF

The chromosomal replication origin region () of characterised bacteria is dynamically positioned throughout the cell cycle. In slowly growing , is maintained at mid-cell from birth until its replication, after which newly replicated sister s move to opposite quarter positions. Here, we provide an explanation for positioning based on the self-organisation of the Structural Maintenance of Chromosomes complex, MukBEF, which forms dynamically positioned clusters on the chromosome.

View Article and Find Full Text PDF

A biomimetic system capable of replication and segregation of genetic material constitutes an essential component for the future design of a minimal synthetic cell. Here we have used the simple T7 bacteriophage system and the plasmid-derived ParMRC system to establish in vitro DNA replication and DNA segregation, respectively. These processes were incorporated into biomimetic compartments providing an enclosed reaction space.

View Article and Find Full Text PDF

In this review, we discuss multi-color single-molecule imaging and tracking strategies for studying microbial cell biology. We first summarize and compare the methods in a detailed literature review of published studies conducted in bacteria and fungi. We then introduce a guideline on which factors and parameters should be evaluated when designing a new experiment, from fluorophore and labeling choices to imaging routines and data analysis.

View Article and Find Full Text PDF

Identification of a basal system for unwinding a bacterial chromosome origin.

EMBO J

August 2019

Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, UK.

Genome duplication is essential for cell proliferation, and DNA synthesis is generally initiated by dedicated replication proteins at specific loci termed origins. In bacteria, the master initiator DnaA binds the chromosome origin (oriC) and unwinds the DNA duplex to permit helicase loading. However, despite decades of research it remained unclear how the information encoded within oriC guides DnaA-dependent strand separation.

View Article and Find Full Text PDF

DNA replication forks are intrinsically asymmetric and may arrest during the cell cycle upon encountering modifications in the DNA. We have studied real time dynamics of three DNA polymerases and an exonuclease at a single molecule level in the bacterium Bacillus subtilis. PolC and DnaE work in a symmetric manner and show similar dwell times.

View Article and Find Full Text PDF

Minimal exposure of lipid II cycle intermediates triggers cell wall antibiotic resistance.

Nat Commun

June 2019

LOEWE  Center  for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Strasse 6, 35032, Marburg, Germany.

Cell wall antibiotics are crucial for combatting the emerging wave of resistant bacteria. Yet, our understanding of antibiotic action is limited, as many strains devoid of all resistance determinants display far higher antibiotic tolerance in vivo than suggested by the antibiotic-target binding affinity in vitro. To resolve this conflict, here we develop a comprehensive theory for the bacterial cell wall biosynthetic pathway and study its perturbation by antibiotics.

View Article and Find Full Text PDF

Conversion of biological feedstocks into value-added chemicals is mostly performed via microbial fermentation. An emerging alternative approach is the use of cell-free systems, consisting of purified enzymes and cofactors. Unfortunately, the in vivo and in vitro research communities rarely interact, which leads to oversimplifications and exaggerations that do not permit fair comparison of the two strategies and impede synergistic interactions.

View Article and Find Full Text PDF

A Single-Molecule View of Archaeal Transcription.

J Mol Biol

September 2019

Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany. Electronic address:

The discovery of the archaeal domain of life is tightly connected to an in-depth analysis of the prokaryotic RNA world. In addition to Carl Woese's approach to use the sequence of the 16S rRNA gene as phylogenetic marker, the finding of Karl Stetter and Wolfram Zillig that archaeal RNA polymerases (RNAPs) were nothing like the bacterial RNAP but are more complex enzymes that resemble the eukaryotic RNAPII was one of the key findings supporting the idea that archaea constitute the third major branch on the tree of life. This breakthrough in transcriptional research 40years ago paved the way for in-depth studies of the transcription machinery in archaea.

View Article and Find Full Text PDF

Bacteria as single-cell organisms are important model systems to study cellular mechanisms and functions. In recent years and with the help of advanced fluorescence microscopy techniques, immense progress has been made in characterizing and quantifying the behavior of single bacterial cells on the basis of molecular interactions and assemblies in the complex environment of live cultures. Importantly, single-molecule imaging enables the determination of the stoichiometry and molecular architecture of subcellular structures, yielding detailed, quantitative, spatiotemporally resolved molecular maps and unraveling dynamic heterogeneities and subpopulations on the subcellular level.

View Article and Find Full Text PDF

Developing new carbon dioxide (CO) fixing enzymes is a prerequisite to create new biocatalysts for diverse applications in chemistry, biotechnology and synthetic biology. Here we used bioinformatics to identify a "sleeping carboxylase function" in the superfamily of medium-chain dehydrogenases/reductases (MDR), i.e.

View Article and Find Full Text PDF

Temperature is one of the key cues that enable microorganisms to adjust their physiology in response to environmental changes. Here we show that motility is the major cellular function of Escherichia coli that is differentially regulated between growth at normal host temperature of 37°C and the febrile temperature of 42°C. Expression of both class II and class III flagellar genes is reduced at 42°C because of lowered level of the upstream activator FlhD.

View Article and Find Full Text PDF

In response to environmental changes, cells often adapt by up-regulating genes to synthesize proteins that generate a benefit in the new environment. Several such cases of gene induction have been reported where the timing was heterogeneous, with some cells responding early and others responding late, although the microbial population was genetically homogeneous and the environment was well mixed. Here, we explore under which conditions heterogeneous timing of gene induction could be advantageous for the population as a whole.

View Article and Find Full Text PDF

Codon Usage Heterogeneity in the Multipartite Prokaryote Genome: Selection-Based Coding Bias Associated with Gene Location, Expression Level, and Ancestry.

mBio

May 2019

IBBM-Instituto de Biotecnología y Biología Molecular, CONICET, CCT-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina

Prokaryotes represent an ancestral lineage in the tree of life and constitute optimal resources for investigating the evolution of genomes in unicellular organisms. Many bacterial species possess multipartite genomes offering opportunities to study functional variations among replicons, how and where new genes integrate into a genome, and how genetic information within a lineage becomes encoded and evolves. To analyze these issues, we focused on the model soil bacterium , which harbors a chromosome, a chromid (pSymB), a megaplasmid (pSymA), and, in many strains, one or more accessory plasmids.

View Article and Find Full Text PDF

The activity of extracytoplasmic function σ-factors (ECFs) is typically regulated by anti-σ factors. In a number of highly abundant ECF groups, including ECF41 and ECF42, σ-factors contain fused C-terminal protein domains, which provide the necessary regulatory function instead. Here, we identified the contact interface between the C-terminal extension and the core σ-factor regions required for controlling ECF activity.

View Article and Find Full Text PDF

Objectives: Little is known about the activity and dynamics of ATPase RarA in B. subtilis, proposed to act at stalled DNA replication forks due to DNA damage. We performed fluorescence microscopy time lapse experiments with a functional RarA-mVenus fusion to visualize the dynamics of RarA during conditions that generate DNA damage.

View Article and Find Full Text PDF

Vibrio cholerae is an aquatic bacterium with the potential to infect humans and cause the cholera disease. While most bacteria have single chromosomes, the V. cholerae genome is encoded on two replicons of different size.

View Article and Find Full Text PDF