444 results match your criteria: "LOEWE Center for Synthetic Microbiology & Department of Chemistry[Affiliation]"

Cellular reproduction is one of the fundamental hallmarks of life. Therefore, the development of a minimal division machinery capable of proper genome condensation and organization, mid-cell positioning and segregation in space and time, and the final septation process constitute a fundamental challenge for synthetic biology. It is therefore important to be able to engineer such modules for the production of artificial minimal cells.

View Article and Find Full Text PDF

Cytoskeletal and Actin-Based Polymerization Motors and Their Role in Minimal Cell Design.

Adv Biosyst

June 2019

Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany.

Life implies motion. In cells, protein-based active molecular machines drive cell locomotion and intracellular transport, control cell shape, segregate genetic material, and split a cell in two parts. Key players among molecular machines driving these various cell functions are the cytoskeleton and motor proteins that convert chemical bound energy into mechanical work.

View Article and Find Full Text PDF

Faithful segregation of replicated genomes to dividing daughter cells is a major hallmark of cellular life and needs to be part of the future design of the robustly proliferating minimal cell. So far, the complexity of eukaryotic chromosome segregation machineries has limited their applicability to synthetic systems. Prokaryotic plasmid segregation machineries offer promising alternative tools for bottom-up synthetic biology, with the first three-component DNA segregation system being reconstituted a decade ago.

View Article and Find Full Text PDF

Although several proteins have been identified that facilitate chromosome segregation in bacteria, no clear analogue of the mitotic machinery in eukaryotic cells has been identified. In order to investigate if recognizable patterns of segregation exist during the cell cycle, we tracked the segregation of duplicated origin regions in for 60 min in the fastest practically achievable resolution, achieving 10-s intervals. We found that while separation occurred in random patterns, often including backwards movement, overall, segregation of loci near the origins of replication was linear for the entire cell cycle.

View Article and Find Full Text PDF

The PhoQ/PhoP two-component system plays a vital role in the regulation of Mg homeostasis, resistance to acid and hyperosmotic stress, cationic antimicrobial peptides, and virulence in , Salmonella and related bacteria. Previous studies have shown that MgrB, a 47 amino acid membrane protein that is part of the PhoQ/PhoP regulon, inhibits the histidine kinase PhoQ. MgrB is part of a negative feedback loop modulating this two-component system that prevents hyperactivation of PhoQ and may also provide an entry point for additional input signals for the PhoQ/PhoP pathway.

View Article and Find Full Text PDF

Proteins destined for transport to specific organelles usually contain targeting information, which are embedded in their sequence. Many enzymes are required in more than one cellular compartment and different molecular mechanisms are used to achieve dual localization. Here we report a cryptic type 2 peroxisomal targeting signal encoded in the 5' untranslated region of fungal genes coding for 6-phosphogluconate dehydrogenase (PGD), a key enzyme of the oxidative pentose phosphate pathway.

View Article and Find Full Text PDF

Endocytosis is a fundamental cellular trafficking pathway, which requires an organized assembly of the multiprotein endocytic coat to pull the plasma membrane into the cell. Although the protein composition of the endocytic coat is known, its functional architecture is not well understood. Here, we determine the nanoscale organization of the endocytic coat by FRET microscopy in yeast Saccharomyces cerevisiae.

View Article and Find Full Text PDF

Correct intracellular distribution of proteins is critical for the function of eukaryotic cells. Certain proteins are targeted to more than one cellular compartment, e.g.

View Article and Find Full Text PDF

The biology of bacterial cells is, in general, based on information encoded on circular chromosomes. Regulation of chromosome replication is an essential process that mostly takes place at the origin of replication (oriC), a locus unique per chromosome. Identification of high numbers of oriC is a prerequisite for systematic studies that could lead to insights into oriC functioning as well as the identification of novel drug targets for antibiotic development.

View Article and Find Full Text PDF

Microorganisms have evolved specific cell surface molecules that enable discrimination between cells from the same and from a different kind. Here, we investigate the role of Flo11-type cell surface adhesins from social yeasts in kin discrimination. We measure the adhesion forces mediated by Flo11A-type domains using single-cell force spectroscopy, quantify Flo11A-based cell aggregation in populations and determine the Flo11A-dependent segregation of competing yeast strains in biofilms.

View Article and Find Full Text PDF

Polyketide synthases (PKSs) use simple extender units to synthesize complex natural products. A fundamental question is how different extender units are site-specifically incorporated into the growing polyketide. Here we established phoslactomycin (Pn) PKS, which incorporates malonyl- and ethylmalonyl-CoA, as an in vitro model to study substrate specificity.

View Article and Find Full Text PDF

Bacterial flagellar motility plays an important role in many processes that occur at surfaces or in hydrogels, including adhesion, biofilm formation, and bacterium-host interactions. Consequently, expression of flagellar genes, as well as genes involved in biofilm formation and virulence, can be regulated by the surface contact. In a few bacterial species, flagella themselves are known to serve as mechanosensors, where an increased load on flagella experienced during surface contact or swimming in viscous media controls gene expression.

View Article and Find Full Text PDF

Prokaryotic cells display a striking subcellular organization. Studies of the underlying mechanisms in different species have greatly enhanced our understanding of the morphological and physiological adaptation of bacteria to different environmental niches. The image analysis software tool BacStalk is designed to extract comprehensive quantitative information from the images of morphologically complex bacteria with stalks, flagella, or other appendages.

View Article and Find Full Text PDF

Hornworts comprise a bryophyte lineage that diverged from other extant land plants >400 million years ago and bears unique biological features, including a distinct sporophyte architecture, cyanobacterial symbiosis and a pyrenoid-based carbon-concentrating mechanism (CCM). Here, we provide three high-quality genomes of Anthoceros hornworts. Phylogenomic analyses place hornworts as a sister clade to liverworts plus mosses with high support.

View Article and Find Full Text PDF

Coordination of outer membrane constriction with septation is critical to faithful division in Gram-negative bacteria and vital to the barrier function of the membrane. This coordination requires the recruitment of the peptidoglycan-binding outer-membrane lipoprotein Pal at division sites by the Tol system. Here, we show that Pal accumulation at Escherichia coli division sites is a consequence of three key functions of the Tol system.

View Article and Find Full Text PDF

contains two known cyclic di-GMP (c-di-GMP)-dependent receptors, YdaK and DgrA, as well as three diguanylate cyclases (DGCs): soluble DgcP and membrane-integral DgcK and DgcW. DgrA regulates motility, while YdaK is responsible for the formation of a putative exopolysaccharide, dependent on the activity of DgcK. Using single-molecule tracking, we show that a majority of DgcK molecules are statically positioned in the cell membrane but significantly less so in the absence of YdaK but more so upon overproduction of YdaK.

View Article and Find Full Text PDF

Communication by means of diffusible signaling molecules facilitates higher-level organization of cellular populations. Gram-positive bacteria frequently use signaling peptides, which are either detected at the cell surface or 'probed' by intracellular receptors after being pumped into the cytoplasm. While the former type is used to monitor cell density, the functions of pump-probe networks are less clear.

View Article and Find Full Text PDF

Defects in flagella/cilia are often associated with infertility and disease. Motile male gametes (sperm cells) are an ancestral eukaryotic trait that has been lost in several lineages like flowering plants. Here, we made use of a phenotypic male fertility difference between two moss (Physcomitrella patens) ecotypes to explore spermatozoid function.

View Article and Find Full Text PDF

For nearly 50 years immunogold labeling on ultrathin sections has been successfully used for protein localization in laboratories worldwide. In theory and in practice, this method has undergone continual improvement over time. In this study, we carefully analyzed circulating protocols for postembedding labeling to find out if they are still valid under modern laboratory conditions, and in addition, we tested unconventional protocols.

View Article and Find Full Text PDF

Bacterial resistance against antibiotics often involves multiple mechanisms that are interconnected to ensure robust protection. So far, the knowledge about underlying regulatory features of those resistance networks is sparse, since they can hardly be determined by experimentation alone. Here, we present the first computational approach to elucidate the interplay between multiple resistance modules against a single antibiotic and how regulatory network structure allows the cell to respond to and compensate for perturbations of resistance.

View Article and Find Full Text PDF

A major form of transcriptional regulation in bacteria occurs through the exchange of the primary σ factor of RNA polymerase (RNAP) with an alternative extracytoplasmic function (ECF) σ factor. ECF σ factors are generally intrinsically active and are retained in an inactive state via the sequestration into σ factor-anti-σ factor complexes until their action is warranted. Here, we report a previously uncharacterized mechanism of transcriptional regulation that relies on intrinsically inactive ECF σ factors, the activation of which and interaction with the β'-subunit of RNAP depends on σ factor phosphorylation.

View Article and Find Full Text PDF

Bacillus subtilis can import DNA from the environment by an uptake machinery that localizes to a single cell pole. We investigated the roles of ComEB and of the ATPase ComGA during the state of competence. We show that ComEB plays an important role during competence, possibly because it is necessary for the recruitment of GomGA to the cell pole.

View Article and Find Full Text PDF

Defective Kernel 1 (DEK1) is genetically at the nexus of the 3D morphogenesis of land plants. We aimed to localize DEK1 in the moss Physcomitrella patens to decipher its function during this process. To detect DEK1 in vivo, we inserted the tdTomato fluorophore into PpDEK1 gene locus.

View Article and Find Full Text PDF

Oxalyl-CoA Decarboxylase Enables Nucleophilic One-Carbon Extension of Aldehydes to Chiral α-Hydroxy Acids.

Angew Chem Int Ed Engl

March 2020

Department of Biochemistry & Synthetic Metabolism, Max-Planck-Institute for terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany.

The synthesis of complex molecules from simple, renewable carbon units is the goal of a sustainable economy. Here we explored the biocatalytic potential of the thiamine-diphosphate-dependent (ThDP) oxalyl-CoA decarboxylase (OXC)/2-hydroxyacyl-CoA lyase (HACL) superfamily that naturally catalyzes the shortening of acyl-CoA thioester substrates through the release of the C -unit formyl-CoA. We show that the OXC/HACL superfamily contains promiscuous members that can be reversed to perform nucleophilic C -extensions of various aldehydes to yield the corresponding 2-hydroxyacyl-CoA thioesters.

View Article and Find Full Text PDF

Microorganisms possess diverse mechanisms to regulate investment into individual cellular processes according to their environment. How these regulatory strategies reflect the inherent trade-off between the benefit and cost of resource investment remains largely unknown, particularly for many cellular functions that are not immediately related to growth. Here, we investigate regulation of motility and chemotaxis, one of the most complex and costly bacterial behaviors, as a function of bacterial growth rate.

View Article and Find Full Text PDF