101 results match your criteria: "Korea Institute of Energy Technology (KENTECH)[Affiliation]"

Article Synopsis
  • * The structural design of LSNMF, with strategically placed NiMn and NiFe, enhances its electronic properties, facilitating better interaction with oxygen, which boosts its catalytic activity.
  • * LSNMF demonstrates impressive performance metrics, including a high current density for both ORR and OER, making it a leading candidate for real-world applications in energy conversion technologies.
View Article and Find Full Text PDF

Machine-Learning-Enabled Thermochemistry Estimator.

J Chem Inf Model

December 2024

Department of Chemical, Biological and Bioengineering, North Carolina A&T State University, Greensboro, North Carolina 27411, United States.

Modeling adsorbates on single-crystal metals is critical in rational catalyst design and other research that requires detailed thermochemistry. First-principles simulations via density functional theory (DFT) are among the prevalent tools to acquire such information about surface species. While they are highly dependable, DFT calculations often require intensive computational resources and runtime.

View Article and Find Full Text PDF

This paper introduces a comprehensive microgrid roadmap for the Korea Institute of Energy Technology (KENTECH), an energy specialized institute in South Korea, aligning with the country's overarching objective of achieving carbon neutrality by the year 2050. The roadmap outlines the integration of diverse energy resources-primarily renewables-to enhance sustainability and energy efficiency on campus. The paper also describes key elements for achieving autonomous energy operations through advanced technologies such as energy management systems, network gateways for system interoperability, static transfer switches, intelligent electronic devices, and power condition systems.

View Article and Find Full Text PDF

Energy storage technologies are eminently developed to address renewable energy utilization efficiently. Porous framework materials possess high surface area and pore volume, allowing for efficient ion transportation and storage. Their unique structure facilitates fast electron transfer, leading to improved battery kinetics.

View Article and Find Full Text PDF

Artificial photosynthesis of hydrogen peroxide (HO) presents a promising environmentally friendly alternative to the industrial anthraquinone process. This work designed ultrathin metal-organic framework (MOF) nanosheets on which porphyrin ligand as an electron donor (D) and anthraquinone (AQ) as an electron acceptor (A) are integrated as the D-A complexes. The porphyrin component allows the MOF nanosheets to absorb full-spectrum solar light while the acceptor AQ motif promotes central aluminum ion coordination, hindering layer stacking to achieve a thickness of 1.

View Article and Find Full Text PDF

In recent years, the peracetic acid (PAA)-based advanced oxidation process (AOPs) has garnered significant attention in the field of water treatment due to rapid response time and environmentally-friendliness. The activation of PAA systems by diverse carbon-based materials plays a crucial role in addressing emerging environmental contaminants, including various types, structures, and modified forms of carbon materials. However, the structural characteristics and structure-activity relationship of carbon-based materials in the activation of PAA are intricate, while the degradation pathways and dominant active species exhibit diversity.

View Article and Find Full Text PDF

This study demonstrates that the oxidation of bromide by birnessite (δ-MnO) results in the concurrent production of soluble manganese (Mn(II)) and reactive bromine (RBr) species in frozen solutions, a process not observed in aqueous solutions. This enhanced oxidation in ice is attributed to the concentration of protons, birnessite, or bromide in the ice grain boundary region. Furthermore, different types of commercial manganese oxides can also oxidize bromide to RBr and release Mn(II) in ice.

View Article and Find Full Text PDF

Colloidal quantum dot (QD)-based light-emitting diodes (QD-LEDs) have reached the pinnacle of quantum efficiency and are now being actively developed for next-generation displays and brighter light sources. Previous research has suggested utilizing inorganic hole-transport layers (HTLs) to explore brighter and more stable QD-LEDs. However, the performance metrics of such QD-LEDs with inorganic HTLs generally lag behind those of organic-inorganic hybrid QD-LEDs employing organic HTLs.

View Article and Find Full Text PDF

Carbon chain elongation characterizations of electrode-biofilm microbes in electro-fermentation.

Water Res

December 2024

State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China. Electronic address:

The higher efficiency of electro-fermentation in synthesizing medium-chain fatty acids (MCFAs) compared to traditional fermentation has been acknowledged. However, the functional mechanisms of electrode-biofilm enhancing MCFAs synthesis remain research gaps. To address this, this study proposed a continuous flow electrode-biofilm reactor for chain elongation (CE).

View Article and Find Full Text PDF

Four representative synthetic methods were employed to prepare Fe-containing siliceous MFI zeolites. The obtained Fe-MFI zeolites exhibited markedly different catalytic performances in the methanol-to-hydrocarbon (MTH) conversion reaction depending on the type of Fe incorporation within the siliceous framework. The catalytically active Brønsted acid sites were analyzed using pyridine adsorption experiments combined with Fourier transform infrared spectroscopy, providing characteristic signal intensities according to the acid-base interactions.

View Article and Find Full Text PDF

Here, we represent a solid-state route for the construction of MOF derived multifunctional Z-scheme NiCoO/NiO/C applied for the photocatalytic removal of methylene blue (dye) and tetracycline (drug) and the reduction of Cr(VI) (heavy metal). The developed solid-state method yielded a highly effective NiCoO/NiO/C catalyst by mechanically grinding independently produced Ni and Co-MOFs and subsequently pyrolyzing them. The use of different linkers in the Ni MOF (H-BTC linker) and Co-MOF (2-methylimidazole linker) proved to be effective in constructing the NiCoO/NiO/C composite, ensuring a nonaggregated distribution on a carbon framework.

View Article and Find Full Text PDF

The electrocatalytic conversion of NO offers a promising technology for not only removing the air pollutant but also synthesizing valuable chemicals. We design an integrated-electrocatalysis cell featuring metal organic framework (MOF)-modified gas diffusion electrodes for simultaneous capture of NO and generation of NHNO under low-concentration NO flow conditions. Using 2% NO gas, the modified cathode exhibits a higher NH yield and Faradaic efficiency than an unmodified cathode.

View Article and Find Full Text PDF

Highly Efficient Wide Bandgap Perovskite Solar Cells With Tunneling Junction by Self-Assembled 2D Dielectric Layer.

Adv Mater

October 2024

Australian Centre for Advanced Photovoltaics (ACAP), School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.

Article Synopsis
  • - The study tackles challenges in improving wide-bandgap perovskite solar cells by forming a bilayer structure using a thin 2D perovskite (BAPbBr) beneath a 3D perovskite (CsFAPb(IBr)) on a tin oxide (SnO) layer, which helps with band alignment and reduces non-radiative recombination.
  • - This self-organization process is driven by interactions between the oxygen vacancies on the SnO surface and hydrogen atoms in a cation, allowing the 2D layer to effectively bridge the 3D layer, leading to higher energy efficiency.
  • - The resulting solar cells showcase impressive power conversion efficiencies (21.54% for 1
View Article and Find Full Text PDF

Donnan equilibrium in charged slit-pores from a hybrid nonequilibrium molecular dynamics/Monte Carlo method with ions and solvent exchange.

J Chem Phys

August 2024

Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France.

Ion partitioning between different compartments (e.g., a porous material and a bulk solution reservoir), known as Donnan equilibrium, plays a fundamental role in various contexts such as energy, environment, or water treatment.

View Article and Find Full Text PDF

Metal-based catalytic materials exhibit exceptional properties in degrading emerging pollutants within Fenton-like systems. However, the potential risk of metal leaching has become pressing environmental concern. This study addressed scientific issues pertaining to the leaching behavior and control strategies for metal-based catalytic materials.

View Article and Find Full Text PDF

Interest in the importance of gas sensing devices has increased significantly due to their critical function in monitoring the environment and controlling pollution, resulting in an increased market demand. The present review explores perovskite La-Fe-O based gas sensors with a special focus on LaFeO and evaluates their sensitivity to a diverse range of practical target gases that need to be monitored. An analysis has been conducted to assess different routes not only of synthesizing LaFeO material but also of characterization with the targeted use for their gas sensing abilities.

View Article and Find Full Text PDF

Solar-driven highly selective conversion of glycerol to dihydroxyacetone using surface atom engineered BiVO photoanodes.

Nat Commun

June 2024

Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.

Dihydroxyacetone is the most desired product in glycerol oxidation reaction because of its highest added value and large market demand among all possible oxidation products. However, selectively oxidative secondary hydroxyl groups of glycerol for highly efficient dihydroxyacetone production still poses a challenge. In this study, we engineer the surface of BiVO by introducing bismuth-rich domains and oxygen vacancies (Bi-rich BiVO) to systematically modulate the surface adsorption of secondary hydroxyl groups and enhance photo-induced charge separation for photoelectrochemical glycerol oxidation into dihydroxyacetone conversion.

View Article and Find Full Text PDF

Reaction Templates: Bridging Synthesis Knowledge and Artificial Intelligence.

Acc Chem Res

July 2024

Department of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea.

ConspectusThe field of chemical research boasts a long history of developing software to automate synthesis planning and reaction prediction. Early software relied heavily on expert systems, requiring significant effort to encode vast amounts of synthesis knowledge into a computer-readable format. However, recent advancements in deep learning have shifted the focus toward AI models, offering improved prediction capabilities.

View Article and Find Full Text PDF

Feld-induced modulation of two-dimensional electron gas at LaAlO/SrTiO interface by polar distortion of LaAlO.

Nat Commun

June 2024

Department of Energy Engineering, KENTECH Institute for Energy Materials and Devices, Korea Institute of Energy Technology (KENTECH), Naju, Republic of Korea.

Since the discovery of two-dimensional electron gas at the LaAlO/SrTiO interface, its intriguing physical properties have garnered significant interests for device applications. Yet, understanding its response to electrical stimuli remains incomplete. Our in-situ transmission electron microscopy analysis of a LaAlO/SrTiO two-dimensional electron gas device under electrical bias reveals key insights.

View Article and Find Full Text PDF

Surface Area-Enhanced Cerium and Sulfur-Modified Hierarchical Bismuth Oxide Nanosheets for Electrochemical Carbon Dioxide Reduction to Formate.

Small

October 2024

Graduate School, Department of Energy Storage/Conversion Engineering (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea.

Electrochemical carbon dioxide reduction reaction (ECORR) is a promising approach to synthesize fuels and value-added chemical feedstocks while reducing atmospheric CO levels. Here, high surface area cerium and sulfur-doped hierarchical bismuth oxide nanosheets (Ce@S-BiO) are develpoed by a solvothermal method. The resulting Ce@S-BiO electrocatalyst shows a maximum formate Faradaic efficiency (FE) of 92.

View Article and Find Full Text PDF

Fostering Charge Carrier Transport and Absorber Growth Properties in CZTSSe Thin Films with an ALD-SnO Capping Layer.

ACS Appl Mater Interfaces

June 2024

Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea.

The present study demonstrates that precursor passivation is an effective approach for improving the crystallization process and controlling the detrimental defect density in high-efficiency CuZnSn(S,Se) (CZTSSe) thin films. It is achieved by applying the atomic layer deposition (ALD) of the tin oxide (ALD-SnO) capping layer onto the precursor (Cu-Zn-Sn) thin films. The ALD-SnO capping layer was observed to facilitate the homogeneous growth of crystalline grains and mitigate defects prior to sulfo-selenization in CZTSSe thin films.

View Article and Find Full Text PDF

Quantum barriers engineering toward radiative and stable perovskite photovoltaic devices.

Nat Commun

May 2024

School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, Republic of Korea.

Efficient photovoltaic devices must be efficient light emitters to reach the thermodynamic efficiency limit. Here, we present a promising prospect of perovskite photovoltaics as bright emitters by harnessing the significant benefits of photon recycling, which can be practically achieved by suppressing interfacial quenching. We have achieved radiative and stable perovskite photovoltaic devices by the design of a multiple quantum well structure with long (∼3 nm) organic spacers with oleylammonium molecules at perovskite top interfaces.

View Article and Find Full Text PDF

Electronic-grade epitaxial (111) KTaO heterostructures.

Sci Adv

May 2024

Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.

KTaO heterostructures have recently attracted attention as model systems to study the interplay of quantum paraelectricity, spin-orbit coupling, and superconductivity. However, the high and low vapor pressures of potassium and tantalum present processing challenges to creating heterostructure interfaces clean enough to reveal the intrinsic quantum properties. Here, we report superconducting heterostructures based on high-quality epitaxial (111) KTaO thin films using an adsorption-controlled hybrid PLD to overcome the vapor pressure mismatch.

View Article and Find Full Text PDF

Time-resolved spectroscopic investigation for the practical application of a photocatalytic air purifier.

J Hazard Mater

July 2024

Department of Energy Engineering/KENTECH Institute for Environmental and Climate Technology, Korea Institute of Energy Technology (KENTECH), Naju 58330, Republic of Korea. Electronic address:

The photocatalytic efficiency for removing volatile organic compounds (VOCs) is significantly influenced by operational parameters like humidity and flow velocity, exhibiting notable and inconsistent fluctuations in both lab-scale and large-scale demonstrations. In this study, operando spectroscopy and isotope analysis were employed to investigate the correlation between humidity levels and degradation of gaseous acetaldehyde using TiO photocatalysts, aiming to demonstrate the scaling-up of photocatalytic air purifier. It was observed that rate constants for the mineralization of acetaldehyde rapidly decreased by 30% as relative humidity increased from 25% to 80% in the flow system (with an air velocity, v = 0.

View Article and Find Full Text PDF

Reliable quality and sustainable processes must be developed for commodities to enter the commercial stage. For next-generation photovoltaic applications such as perovskite solar cells, it is essential to manufacture high-quality photoactive perovskites eco-friendly processes. We demonstrate that ethanol, an ideal green solvent, can be applied to yield efficient alpha-phase FAPbI perovskite microcrystals.

View Article and Find Full Text PDF