6 results match your criteria: "Korea Institute of Energy Research 152 Gajeong-ro[Affiliation]"

Fine control of structural and morphological features in electrochromic materials is of paramount importance for realizing practical electrochromic devices (ECDs), which can dynamically adjust indoor light and temperature of buildings. To this end, herein we investigate impacts of two variants such as Ti-doping amount and the annealing temperature on physical and chemical properties of sol-gel derived electrochromic WO films. We use a wide range of titanium coupling agents (TCAs) as Ti-dopants ranging from 0 wt% to 20 wt% and vary the annealing temperature between 200 °C and 400 °C with 50 °C interval.

View Article and Find Full Text PDF

Triboelectric nanogenerators (TENGs) based on ferroelectric organic materials have advantages of high flexibility, biocompatibility, controllable ferroelectric properties, However, this has limited the electrical output performance due to their lower ferroelectric characteristics than those of inorganic ferroelectric materials. A lot of effort has been made to improve the organic ferroelectric characteristics through composites, surface modifications, structures, Herein, we report TENGs made of ferroelectric composite materials consisting of poly(vinylidene fluoride--trifluoroethylene) (PVDF-TrFE) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The composite was prepared by simply blending PVDF-TrFE and PEDOT:PSS with a weight ratio from 0% to 60%.

View Article and Find Full Text PDF

Analytical study on changes in domestic hot water use caused by COVID-19 pandemic.

Energy (Oxf)

September 2021

Energy ICT Convergence Research Department, Korea Institute of Energy Research 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea.

COVID-19 made considerable changes in the lifestyle of people, which have led to a rise in energy use in homes. So, this study investigated the relationship between COVID-19 and domestic hot water demands. For this purpose, a nondimensional and principal component analysis were conducted to find out the influencing factors using demand data before and after COVID-19 from our study site.

View Article and Find Full Text PDF

Cheap, facile, and upscalable activated carbon-based photothermal layers for solar steam generation.

RSC Adv

November 2020

Graduate School of Energy Science and Technology, Chungnam National University 99 Daehak-ro, Yuseong-gu Daejeon 34134 Republic of Korea +82-42-821-8610.

Solar-to-steam generation characterized by nanostructured photothermal materials and interfacial heating is developed based on various carbon nanostructures such as graphene, reduced graphene oxide, CNT, or their combinations. However, multiple and sophisticated synthetic steps are required to generate macroscopic porosity in photothermal devices for the efficient mass transport of water and generated steam. Additionally, the fabrication of photothermal layers on a practical scale constitutes the main hurdle for real applications toward solar-driven desalination.

View Article and Find Full Text PDF

Catalytic hydrogenation of CO into formic acid/formate is an attractive conversion in the utilization of CO. Although various catalysts with high catalytic efficiency are reported, a very few studies have been carried out to correlate/understand the efficacy and stability of the hydrogenation catalysts, which could be helpful to direct the future design strategy of corresponding catalysts. Herein, a half-sandwich iridium complex containing bibenzimidazole as a proton responsive N-donor ligand, [Cp*Ir(BiBzImH)Cl]Cl, has been synthesized and fully characterized.

View Article and Find Full Text PDF

Advanced carbon materials are important for the next-generation of energy storage apparatus, such as electrochemical capacitors. Here, the physical and electrochemical properties of carbonised filter paper (FP) were investigated. FP is comprised of pure cellulose and is a standardised material.

View Article and Find Full Text PDF