2 results match your criteria: "Korea Institute of Civil Engineering and Building Technology 283[Affiliation]"

Pyrolytic valorization of water treatment residuals containing powdered activated carbon as multifunctional adsorbents.

Chemosphere

August 2020

Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology 283, Goyang-daero, Ilsanseo-gu, Goyang-si, Gyeonggi-do, 10223, Republic of Korea. Electronic address:

This study investigated the possibility of applying pyrolysis as an alternative method to recycle powdered activated carbon-containing water treatment residuals (PAC-WTRs) discharged from the Cheongju water treatment plant as a multifunctional adsorbent. WTRs pyrolyzed for 1 h at 200-700 °C were compared with raw material. The carbon content of the PAC-WTR reaches 19.

View Article and Find Full Text PDF

Concrete has high compressive strength, but low tensile strength, bending strength, toughness, low resistance to cracking, and brittle fracture characteristics. To overcome these problems, fiber-reinforced concrete, in which the strength of concrete is improved by inserting fibers, is being used. Recently, high-performance fiber-reinforced cementitious composites (HPFRCCs) have been extensively researched.

View Article and Find Full Text PDF