5,444 results match your criteria: "Korea Advanced Institute of Science and Technology(KAIST)[Affiliation]"

Omniphobic surfaces, which repel virtually any liquid regardless of its wettability, have been developed using doubly re-entrant microstructures. Although various microfabrication techniques have been explored, these often require multiple complex steps. In this study, reaction-diffusion photolithography (RDP) is used to fabricate micropost arrays with doubly re-entrant geometries through a single-step ultraviolet (UV) exposure process.

View Article and Find Full Text PDF

Ultrahigh Specific Strength by Bayesian Optimization of Carbon Nanolattices.

Adv Mater

January 2025

Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, M5S 3G8, Canada.

Nanoarchitected materials are at the frontier of metamaterial design and have set the benchmark for mechanical performance in several contemporary applications. However, traditional nanoarchitected designs with conventional topologies exhibit poor stress distributions and induce premature nodal failure. Here, using multi-objective Bayesian optimization and two-photon polymerization, optimized carbon nanolattices with an exceptional specific strength of 2.

View Article and Find Full Text PDF

Optimizing process and heat-treatment parameters of laser powder bed fusion for producing Ti-6Al-4V alloys with high strength and ductility is crucial to meet performance demands in various applications. Nevertheless, inherent trade-offs between strength and ductility render traditional trial-and-error methods inefficient. Herein, we present Pareto active learning framework with targeted experimental validation to efficiently explore vast parameter space of 296 candidates, pinpointing optimal parameters to augment both strength and ductility.

View Article and Find Full Text PDF

Advancing efficiency in deep-blue OLEDs: Exploring a machine learning-driven multiresonance TADF molecular design.

Sci Adv

January 2025

Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan.

The pursuit of boron-based organic compounds with multiresonance (MR)-induced thermally activated delayed fluorescence (TADF) is propelled by their potential as narrowband blue emitters for wide-gamut displays. Although boron-doped polycyclic aromatic hydrocarbons in MR compounds share common structural features, their molecular design traditionally involves iterative approaches with repeated attempts until success. To address this, we implemented machine learning algorithms to establish quantitative structure-property relationship models, predicting key optoelectronic characteristics, such as full width at half maximum (FWHM) and main peak wavelength, for deep-blue MR candidates.

View Article and Find Full Text PDF

A cell fate change such as tumorigenesis incurs critical transition. It remains a longstanding challenge whether the underlying mechanism can be unraveled and a molecular switch that can reverse such transition is found. Here a systems framework, REVERT, is presented with which can reconstruct the core molecular regulatory network model and a reversion switch based on single-cell transcriptome data over the transition process is identified.

View Article and Find Full Text PDF

Unraveling Redox Mediator-Assisted Chemical Relithiation Mechanism for Direct Recycling of Spent Ni-Rich Layered Cathode Materials.

Adv Sci (Weinh)

January 2025

Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, Republic of Korea.

The increasing demand for Li-ion batteries across various energy storage applications underscores the urgent need for environmentally friendly and efficient direct recycling strategies to address the issue of substantial cathode waste. Diverse reducing agents for Li supplements, such as quinone molecules, have been considered to homogenize the Li distribution in the cathode materials obtained after cycling; however, the detailed reaction mechanism is still unknown. Herein, the ideal electrochemical potential factor and reaction mechanism of the redox mediator 3,5-di-tert-butyl-o-benzoquinone (DTBQ) for the chemical relithiation of high-Ni-layered cathodes are elucidated.

View Article and Find Full Text PDF

Background: As our understanding of gut microbiota's metabolic impacts on health grows, the interest in engineered probiotics has intensified. This study aimed to engineer the probiotic Escherichia coli Nissle 1917 (EcN) to produce indoleacetic acid (IAA) in response to gut inflammatory biomarkers thiosulfate and nitrate.

Results: Genetic circuits were developed to initiate IAA synthesis upon detecting inflammatory signals, optimizing a heterologous IAA biosynthetic pathway, and incorporating a RiboJ insulator to enhance IAA production.

View Article and Find Full Text PDF

Ganglioside-incorporating lipid nanoparticles as a polyethylene glycol-free mRNA delivery platform.

Biomater Sci

January 2025

Department of Bio and Brain Engineering, and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.

Incorporation of polyethylene glycol (PEG) is widely used in lipid nanoparticle (LNP) formulation in order to achieve adequate stability due to its stealth properties. However, studies have detected the presence of anti-PEG neutralizing antibodies after PEGylated LNP treatment, which are associated with anaphylaxis, accelerated LNP clearance and premature release of cargo. Here, we report the development of LNPs incorporating ganglioside, a naturally occurring stealth lipid, as a PEG-free alternative.

View Article and Find Full Text PDF

Novel Isothermal Amplification Integrated with CRISPR/Cas13a and Its Applications for Ultrasensitive Detection of SARS-CoV-2.

ACS Synth Biol

January 2025

Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.

We herein developed an ultrasensitive and rapid strategy to identify genomic nucleic acids by integrating a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 13a (Cas13a) into our recently developed isothermal technique, nicking and extension chain reaction system-based amplification (NESBA) reaction. In this technique, named CESBA, the NESBA reaction isothermally produces a large amount of RNA amplicons from the initial target genomic RNA (gRNA). The RNA amplicons bind to the crispr RNA (crRNA) and activate the collateral cleavage activity of Cas13a, which would then cleave the reporter probe nearby, consequently producing the final signals.

View Article and Find Full Text PDF

The efficient functioning of dye-sensitized solar cells (DSSCs) is governed by the interplay of three essential components: the semiconductor, the dye, and the electrolyte. While the impact of the electrolyte composition on the device's performance has been extensively studied in n-type DSSCs, much less is known about p-type-based devices. Here, we investigate the effect of potential-determining ions on the energetics and stability of dye-sensitized NiO surfaces by using electrochemical, ab initio molecular dynamics simulations, and ab initio electronic structure calculations.

View Article and Find Full Text PDF

p-Coumaric acid (p-CA), an invaluable phytochemical, has novel bioactivities, including antiproliferative, anxiolytic, and neuroprotective effects, and is the main precursor of various flavonoids, such as caffeic acid, naringenin, and resveratrol. Herein, we report the engineering of Escherichia coli for de novo production of p-CA via the PAL-C4H pathway. As the base strain, we used the E.

View Article and Find Full Text PDF

Toxic protein aggregates are associated with various neurodegenerative diseases, including Huntington's disease (HD). Since no current treatment delays the progression of HD, we develop a mechanistic approach to prevent mutant huntingtin (mHttex1) aggregation. Here, we engineer the ATP-independent cytosolic chaperone PEX19, which targets peroxisomal membrane proteins to peroxisomes, to remove mHttex1 aggregates.

View Article and Find Full Text PDF

NIR-Reflective Black Photonic Films Designed for Effective LiDAR Recognition.

ACS Appl Mater Interfaces

January 2025

Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.

Conventional dark-tone paints absorb both visible light and near-infrared (NIR) wavelengths, posing a challenge for light detection and ranging (LiDAR) recognition in autonomous driving. To overcome this issue, various chemical and structural coating materials have been explored to selectively reflect NIR. In this study, we newly propose colloidal photonic crystals with a stopband in the NIR range, fabricated through the spontaneous formation of crystalline arrays of silica particles dispersed in a photocurable resin, as a potential solution.

View Article and Find Full Text PDF

Computational Insights into "Lone Pair-Lone Pair Interaction-Controlled" Isomerization in the Asymmetric Total Syntheses of (+)-3-()-Laureatin and (+)-3-()-Isolaureatin.

J Org Chem

January 2025

Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) and Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.

Described herein is our computational study to rationalize the stereoselective epimerization of α,α'--disubstituted oxolane and oxetane ketones and to the corresponding α,α'- ketones and reported in our previous total syntheses of (+)-3-()-isolaureatin () and (+)-3-()-laureatin (). Density functional theory (DFT) calculations using appropriately truncated models revealed that the α,α'- ketones are more stable than the α,α'- ketones, in very good agreement with experimental results. The computational results showed that the isomer with a longer interatomic distance between the two ring oxygen atoms was lower in energy, which suggested the presence of repulsive interactions between those oxygen atoms.

View Article and Find Full Text PDF

We present a photocatalytic protocol for the -arylation of carboxylic acids using nickel complexes bearing C8-pyridyl xanthines. Our studies suggest that the underlying mechanism operates independently of external photosensitizers. Stoichiometric experiments and crystallographic studies characterize the catalytically relevant Ni complexes.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most prevalent neurodegenerative dementia, marked by progressive cognitive decline and memory impairment. Despite advances in therapeutic research, single-target-directed treatments often fall short in addressing the complex, multifactorial nature of AD. This arises from various pathological features, including amyloid-β (Aβ) aggregate deposition, metal ion dysregulation, oxidative stress, impaired neurotransmission, neuroinflammation, mitochondrial dysfunction, and neuronal cell death.

View Article and Find Full Text PDF

Automated Vehicles (AVs) are on the cusp of commercialization, prompting global governments to organize the forthcoming mobility phase. However, the advancement of technology alone cannot guarantee the successful commercialization of AVs without insights into the accidents on the read roads where Human-driven Vehicles (HV) coexist. To address such an issue, The New Car Assessment Program (NCAP) is currently in progress, and scenario-based approaches have been spotlighted.

View Article and Find Full Text PDF

Previous studies have identified three families of knotted phytochrome photoreceptors in cyanobacteria. We describe a fourth type: 'hybrid' phytochromes with putative bilin-binding cysteine residues in both their N-terminal 'knot' extensions and cGMP-phosphodiesterase/adenylate cyclase/FhlA (GAF) domains, which we designate as dual-cysteine bacteriophytochromes (DCBs). Recombinant expression of DCBs in Escherichia coli yields photoactive phycocyanobilin (PCB) adducts with red/far-red photocycles similar to those of the GAF-Cys-containing cyanobacterial phytochromes (Cph1s).

View Article and Find Full Text PDF

The mechanistic link between the complex mutational landscape of de novo methyltransferase DNMT3A and the pathology of acute myeloid leukemia (AML) has not been clearly elucidated so far. Motivated by a recent discovery of the significance of DNMT3A-destabilizing mutations (DNMT3A) in AML, we here investigate the common characteristics of DNMT3A AML methylomes through computational analyses. We present that methylomes of DNMT3A AMLs are considerably different from those of DNMT3A AMLs in that they exhibit increased intratumor DNA methylation heterogeneity in bivalent chromatin domains.

View Article and Find Full Text PDF

Elasticity of Swollen and Folded Polyacrylamide Hydrogel Using the MARTINI Coarse-Grained Model.

ACS Appl Mater Interfaces

January 2025

School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.

One of the key advantages of using a hydrogel is its superb control over elasticity obtained through variations of constituent polymer and water. The underlying molecular nature of a hydrogel is a fundamental origin of hydrogel mechanics. In this article, we report a Polyacrylamide (PAAm)-based hydrogel model using the MARTINI coarse-grained (CG) force field.

View Article and Find Full Text PDF

Human γδ T cells in the tumor microenvironment: Key insights for advancing cancer immunotherapy.

Mol Cells

January 2025

Laboratory of Host Defenses, Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea; KAIST Institute of Health Science and Technology, KAIST, Daejeon 34141, Republic of Korea. Electronic address:

The role of γδ T cells in antitumor responses has gained significant attention due to their unique major histocompatibility complex (MHC)-independent killing mechanisms, which distinguish them from conventional αβ T cells. Notably, γδ tumor-infiltrating lymphocytes (TILs) have been identified as favorable prognostic markers in various cancers. However, γδ TIL subsets, including Vδ1, Vδ2, and Vδ3, exhibit distinct prognostic implications and phenotypes from one another within the tumor microenvironment (TME).

View Article and Find Full Text PDF

Non-close-packed crystalline arrays of colloidal particles in an elastic matrix exhibit mechanochromism. However, small interparticle distances often limit the range of reversible color shifts and reduce reflectivity during a blueshift. A straightforward, reproducible strategy using matrix swelling to increase interparticle distance and improve mechanochromic performance is presented.

View Article and Find Full Text PDF

Serum response factor (SRF) is a master transcription factor that regulates immediate early genes and cytoskeletal remodeling genes. Despite its importance, the mechanisms through which SRF stably associates with its cognate promoter remain unknown. Our biochemical and protein-induced fluorescence enhancement analyses showed that the binding of SRF to serum response element was significantly increased by inositol polyphosphate multikinase (IPMK), an SRF cofactor.

View Article and Find Full Text PDF

Energy-Efficient Dynamic Enhanced Inter-Cell Interference Coordination Scheme Based on Deep Reinforcement Learning in H-CRAN.

Sensors (Basel)

December 2024

College of AI/SW Convergence, Kyungnam University, 7 Gyeongnamdaehak-ro, Masanhappo-gu, Changwon 51767, Republic of Korea.

The proliferation of 5G networks has revolutionized wireless communication by delivering enhanced speeds, ultra-low latency, and widespread connectivity. However, in heterogeneous cloud radio access networks (H-CRAN), efficiently managing inter-cell interference while ensuring energy conservation remains a critical challenge. This paper presents a novel energy-efficient, dynamic enhanced inter-cell interference coordination (eICIC) scheme based on deep reinforcement learning (DRL).

View Article and Find Full Text PDF