146 results match your criteria: "Kochi Institute for Core Sample Research[Affiliation]"

Article Synopsis
  • Understanding the effects of climate change on migratory fish species is vital, but limited long-term data on their population dynamics makes management challenging.
  • This study used high-resolution stable oxygen isotope analysis on otoliths of Pacific bluefin tuna to determine the origin of individual fish, revealing significant variations in thermal environments experienced during their larval stage.
  • The findings indicated that fish from different spawning grounds (Sea of Japan and Nansei Islands) had distinct thermal histories, with slightly biased absolute temperature estimates, yet aligning well with known spawning temperatures.
View Article and Find Full Text PDF

Nearly all frictional interfaces strengthen as the logarithm of time when sliding at ultra-low speeds. Observations of also logarithmic-in-time growth of interfacial contact area under such conditions have led to constitutive models that assume that this frictional strengthening results from purely time-dependent, and slip-insensitive, contact-area growth. The main laboratory support for such strengthening has traditionally been derived from increases in friction during "load-point hold" experiments, wherein a sliding interface is allowed to gradually self-relax down to subnanometric slip rates.

View Article and Find Full Text PDF

Chemosynthetic organisms flourish around deep-sea hydrothermal vents where energy-rich fluids are emitted from metal sulfide chimneys. However, microbial life hosted in mineral assemblages in extinct chimneys lacking fluid venting remains largely unknown. The interior of extinct chimneys remains anoxic where the percolation of oxygenated seawater is limited within tightly packed metal sulfide grains.

View Article and Find Full Text PDF

Carbonaceous meteorites are thought to be fragments of C-type (carbonaceous) asteroids. Samples of the C-type asteroid (162173) Ryugu were retrieved by the Hayabusa2 spacecraft. We measured the mineralogy and bulk chemical and isotopic compositions of Ryugu samples.

View Article and Find Full Text PDF

A fourth of the global seabed sediment volume is buried at depths where temperatures exceed 80 °C, a previously proposed thermal barrier for life in the subsurface. Here, we demonstrate, utilizing an extensive suite of radiotracer experiments, the prevalence of active methanogenic and sulfate-reducing populations in deeply buried marine sediment from the Nankai Trough subduction zone, heated to extreme temperature (up to ~120 °C). The small microbial community subsisted with high potential cell-specific rates of energy metabolism, which approach the rates of active surface sediments and laboratory cultures.

View Article and Find Full Text PDF

A part per trillion isotope ratio analysis of Sr/Sr using energy-filtered thermal ionization mass spectrometry.

Sci Rep

January 2022

Faculty of Symbiotic Systems Science, Cluster of Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima, 960-1296, Japan.

Strontium-90 is a major radioactive nuclide released by nuclear accidents and discharge waste. Input of such radioactive nuclide into earth surface environment causes potential threat of long-term internal exposure when taken up by organism. Rapid and precise measurement of Sr in variety of environmental sample is important to understand the distribution and dynamics of Sr in the local environment after the accident and to assess the effect of radioactive nuclide inputs on bodies.

View Article and Find Full Text PDF

Hydrogen isotopes have been widely used as powerful tracers to understand the origin of terrestrial water and the water circulation between the surface and the deep interior of the Earth. However, further quantitative understanding is hindered due to a lack of observations about the changes in D/H ratios of a slab during subduction. Here, we report hydrogen isotope data of olivine-hosted melt inclusions from active volcanoes with variable depths (90‒550 km) to the subducting Pacific slab.

View Article and Find Full Text PDF

The dynamics of potential oxygen consumption at the sediment surface in a seasonally hypoxic bay were monitored monthly by applying a tetrazolium dye (2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl-2H-tetrazolium chloride [INT]) reduction assay to intact sediment core samples for two consecutive years (2012-2013). Based on the empirically determined correlation between INT reduction (INT-formazan formation) and actual oxygen consumption of sediment samples, we inferred the relative contribution of biological and non-biological (chemical) processes to the potential whole oxygen consumption in the collected sediment samples. It was demonstrated that both potentials consistently increased and reached a maximum during summer hypoxia in each year.

View Article and Find Full Text PDF

Microbial cell counting provides essential information for the study of cell abundance profiles and biogeochemical interactions with the surrounding environments. However, it often requires labor-intensive and time-consuming processes, particularly for subseafloor sediment samples, in which non-cell particles are abundant. We developed a rapid and straightforward method for staining microbial intracellular DNA by SYBR Green I (SYBR-I) to enumerate cells by flow cytometry (FCM).

View Article and Find Full Text PDF

Three highly alkaliphilic bacterial strains designated as A1, H1 and B1 were isolated from two highly alkaline springs at The Cedars, a terrestrial serpentinizing site. Cells from all strains were motile, Gram-negative and rod-shaped. Strains A1, H1 and B1 were mesophilic (optimum, 30 °C), highly alkaliphilic (optimum, pH 11) and facultatively autotrophic.

View Article and Find Full Text PDF
Article Synopsis
  • Meteorites contain high-pressure minerals formed from past hypervelocity collisions between asteroids, which were thought to result from larger, kilometer-sized impacts.
  • This study introduces a new transformation mechanism for creating ringwoodite, a common high-pressure mineral, from shock-compressed olivine crystals using a powerful laser and advanced imaging techniques.
  • The findings suggest that smaller asteroids can also produce high-pressure minerals during collisions, indicating that even unshocked meteorites may show evidence of past high-pressure conditions.
View Article and Find Full Text PDF

The combination of high-throughput sequencing technology and environmental DNA (eDNA) analysis has the potential to be a powerful tool for comprehensive, non-invasive monitoring of species in the environment. To understand the correlation between the abundance of eDNA and that of species in natural environments, we have to obtain quantitative eDNA data, usually via individual assays for each species. The recently developed quantitative sequencing (qSeq) technique enables simultaneous phylogenetic identification and quantification of individual species by counting random tags added to the 5' end of the target sequence during the first DNA synthesis.

View Article and Find Full Text PDF

Submarine debris flows are mass movement processes on the seafloor, and are geohazards for seafloor infrastructure such as pipelines, communication cables, and submarine structures. Understanding the generation and run-out behavior of submarine debris flows is thus critical for assessing the risk of such geohazards. The rheological properties of seafloor sediments are governed by factors including sediment composition, grain size, water content, and physico-chemical conditions.

View Article and Find Full Text PDF

Microfossils are a powerful tool in earth sciences, and they have been widely used for the determination of geological age and in paleoenvironmental studies. However, the identification of fossil species requires considerable time and labor by experts with extensive knowledge and experience. In this study, we successfully automated the acquisition of microfossil data using an artificial intelligence system that employs a computer-controlled microscope and deep learning methods.

View Article and Find Full Text PDF

Microorganisms in marine subsurface sediments substantially contribute to global biomass. Sediments warmer than 40°C account for roughly half the marine sediment volume, but the processes mediated by microbial populations in these hard-to-access environments are poorly understood. We investigated microbial life in up to 1.

View Article and Find Full Text PDF

Weathered granite of ion-adsorption rare earth elements (REEs) ore collected at Jiangxi Province, China was investigated to identify the minerals abundant in REEs. The analyses of scanning electron microscopy (SEM)-energy dispersive spectrometry (EDS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for individual mineral particles of the weathered granite showed that kaolinitic particles formed by K-feldspar weathering contained large amounts of REEs. Scanning transmission electron microscopy (STEM)-EDS analyses revealed that the kaolinitic particles were mainly composed of kaolinite, illite and hematite.

View Article and Find Full Text PDF

Thermal ionization mass spectrometry (TIMS) was used to directly quantify an ultratrace of radioactive Sr in microliter droplet samples. No chemical separation was required in removing isobaric interferences on = 90 such as Zr and organic molecules in the mass spectrum because the difference in evaporation and ionization (emission) temperature among organic molecules, Zr and Sr, allows us to control the emission manner and significantly suppress the isobaric interferences. Direct quantification was achieved by improving the intercalibration of Faraday cups and ion counting in an isotope dilution (ID) method.

View Article and Find Full Text PDF

Global diversity of microbial communities in marine sediment.

Proc Natl Acad Sci U S A

November 2020

Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, 783-8502 Kochi, Japan;

Microbial life in marine sediment contributes substantially to global biomass and is a crucial component of the Earth system. Subseafloor sediment includes both aerobic and anaerobic microbial ecosystems, which persist on very low fluxes of bioavailable energy over geologic time. However, the taxonomic diversity of the marine sedimentary microbial biome and the spatial distribution of that diversity have been poorly constrained on a global scale.

View Article and Find Full Text PDF

Aerobic microbial life persists in oxic marine sediment as old as 101.5 million years.

Nat Commun

July 2020

Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan.

Sparse microbial populations persist from seafloor to basement in the slowly accumulating oxic sediment of the oligotrophic South Pacific Gyre (SPG). The physiological status of these communities, including their substrate metabolism, is previously unconstrained. Here we show that diverse aerobic members of communities in SPG sediments (4.

View Article and Find Full Text PDF

Fluorescence in situ hybridization (FISH) is a widely used molecular technique in microbial ecology. However, the non-specific adsorption of fluorescent probes and resulting high intensity of background signals from mineral particles hampers the specific detection of microbial cells in grain-rich environmental samples, such as subseafloor sediments. We herein demonstrated that a new buffer composition containing EDTA efficiently reduced the adsorption of probes without compromising the properties of the FISH-based probing of microbes.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the distinct lung microbiota in patients with antineutrophil cytoplasmic antibody-associated vasculitis (AAV) compared to those with sarcoidosis, focusing on their lung-related pathogenesis.
  • Using high-throughput sequencing of bronchoalveolar lavage fluid from 16 AAV and 21 sarcoidosis patients, researchers found no significant difference in overall microbial diversity but identified clearer distinctions when excluding oral bacteria from the analysis.
  • A linear relationship was observed between the diversity of lung microbiota and disease activity in AAV patients, highlighting the potential influence of oral microbiota on lung conditions.
View Article and Find Full Text PDF

The ~180-km-diameter Chicxulub peak-ring crater and ~240-km multiring basin, produced by the impact that terminated the Cretaceous, is the largest remaining intact impact basin on Earth. International Ocean Discovery Program (IODP) and International Continental Scientific Drilling Program (ICDP) Expedition 364 drilled to a depth of 1335 m below the sea floor into the peak ring, providing a unique opportunity to study the thermal and chemical modification of Earth's crust caused by the impact. The recovered core shows the crater hosted a spatially extensive hydrothermal system that chemically and mineralogically modified ~1.

View Article and Find Full Text PDF

Understanding the origin of organic material on Mars is a major issue in modern planetary science. Recent robotic exploration of Martian sedimentary rocks and laboratory analyses of Martian meteorites have both reported plausible indigenous organic components. However, little is known about their origin, evolution, and preservation.

View Article and Find Full Text PDF