4 results match your criteria: "KobeMI R&D Center[Affiliation]"
Dev Biol
April 2014
Group for Neuronal Differentiation and Development, KAN Research Institute Inc., KobeMI R&D Center, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Group for Stem Cell Technology, KAN Research Institute Inc., KobeMI R&D Center, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan. Electronic address:
Purkinje cells (PCs) provide the primary output from the cerebellar cortex, which controls movement and posture, and loss of PCs causes severe cerebellar dysfunction. The mechanisms underlying cell fate determination and early differentiation of PC remain largely unknown. Here we show that the c-Ski family member and transcriptional regulator Corl2 is required for correct differentiation of PCs.
View Article and Find Full Text PDFGene Expr Patterns
July 2008
KAN Research Institute Inc., KobeMI R&D Center, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
The developmental origin of cerebellar Purkinje cells (PCs) has not been precisely mapped and the genetic program of the specification of this neuronal subtype is largely unknown. Here, we report the isolation of a novel mouse gene encoding a transcriptional corepressor, Corl2, and its expression pattern. Corl2 expression was restricted to the central nervous system in both adult and embryonic stages.
View Article and Find Full Text PDFDevelopment
September 2007
KAN Research Institute Inc., KobeMI R&D Center 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
Directed differentiation and purification of mesencephalic dopaminergic (mesDA) neurons from stem cells are crucial issues for realizing safe and efficient cell transplantation therapies for Parkinson's disease. Although recent studies have identified the factors that regulate mesDA neuron development, the mechanisms underlying mesDA neuron specification are not fully understood. Recently, it has been suggested that mesencephalic floor plate (FP) cells acquire neural progenitor characteristics to generate mesDA neurons.
View Article and Find Full Text PDFDevelopment
August 2007
KAN Research Institute Inc., KobeMI R&D Center, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
The mechanism underlying the determination of neurotransmitter phenotype in the developing mesencephalon, particularly GABAergic versus glutamatergic fate, remains largely unknown. Here, we show in mice that the basic helix-loop-helix transcriptional repressor gene Helt (also known as Megane and Heslike) functions as a selector gene that determines GABAergic over glutamatergic fate in the mesencephalon. Helt was coincidently expressed in all the progenitor domains for mesencephalic GABAergic neurons.
View Article and Find Full Text PDF