1,210 results match your criteria: "Kitzbühel Centre for Physics[Affiliation]"

The beneficial effects of priming technology are aimed at the promotion of growth and development and stress tolerance in plants. Different seed pre-treatment and vegetative priming approaches (osmo-, chemical, physical, hormonal, redox treatments) increase the level of nitric oxide (NO) being an active contributor to growth regulation and defence responses. On the other hand, seed pre-treatment or vegetative priming mainly with the NO donor, sodium nitroprusside (SNP) helps to mitigate different abiotic stresses like salinity, cold, drought, excess metals.

View Article and Find Full Text PDF

In the majority of aerosol drug deposition modelling efforts, the particles are approximated by regular spheres. However, microscope images acquired after drug formulation available in the open literature suggest that their shape is not regular in most of the cases. This work aimed to combine experimental measurements and numerical simulations to reveal the shape factors of the particles of commercialized aerosol drugs and the effect of non-sphericity on the lung deposition distribution of these drugs.

View Article and Find Full Text PDF

Ambient noise cross-correlation has been widely used to observe post-earthquake temporal velocity variations. Comparative studies are essential for assessing seismic hazards and clarifying the relationship between velocity variation and magnitude. However, very few comparative studies by earthquake magnitude have been conducted, particularly for magnitudes smaller than 6.

View Article and Find Full Text PDF

The aim of this work is to incorporate lanthanide-cored upconversion nanoparticles (UCNP) into the surface of microengineered biomedical implants to create a spatially controlled and optically releasable model drug delivery device in an integrated fashion. Our approach enables silicone-based microelectrocorticography (ECoG) implants holding platinum/iridium recording sites to serve as a stable host of UCNPs. Nanoparticles excitable in the near-infrared (lower energy) regime and emitting visible (higher energy) light are utilized in a study.

View Article and Find Full Text PDF

Objectives: Femtosecond laser image guided high precision trabeculotomy (FLigHT) is a novel open-angle glaucoma treatment. The procedure non-invasively creates aqueous humor (AH) drainage channel from the anterior chamber (AC) to Schlemm's canal (SC) through the trabecular meshwork (TM) to decrease intraocular pressure (IOP). The purpose of this study was to develop a 3D finite element model (FEM) of the FLigHT procedure and to simulate clinical results for different drainage channel cross-sectional areas.

View Article and Find Full Text PDF

Cd (T = 6.5 h) and Cd (T = 461.9 d) are promising non-standard gamma-emitting radionuclides with significant potential for SPECT use.

View Article and Find Full Text PDF
Article Synopsis
  • The study evaluates different DFT and TD-DFT methods for simulating ultrafast excited-state dynamics in Fe(II) complexes.
  • The research uses time-resolved X-ray emission spectroscopy data from specific iron complexes to benchmark simulation results between metal-to-ligand charge-transfer (MLCT) and metal-centered (MC) states.
  • Findings suggest that the choice of DFT/TD-DFT method significantly impacts simulation accuracy, with B3LYP* and TPSSh performing best in matching experimental dynamics.
View Article and Find Full Text PDF

The emergence of a local effective theory from a more fundamental theory of quantum gravity with seemingly fewer degrees of freedom is a major puzzle of theoretical physics. A recent approach to this problem is to consider general features of the Hilbert space maps relating these theories. In this work, we construct approximately local observables, or overlapping qubits, from such non-isometric maps.

View Article and Find Full Text PDF

Nodal loop semimetals are topological materials with drumhead surface states characterized by reduced kinetic energy. If the Fermi energy of such a system is near these nondispersive states interaction among charge carriers substantially impacts their electronic structure. The emergence of magnetism in these surface states is one of the possible consequences.

View Article and Find Full Text PDF
Article Synopsis
  • The Carpathian Basin experienced significant demographic changes during the Early Medieval period, influenced by Avar rule for about 250 years and the arrival of early Hungarians in the late 9th century CE.
  • This study analyzes 296 ancient genetic samples from Western Hungary, providing insights into the population structure and dynamics between the 5th and 11th centuries CE, focusing on specific microregions.
  • The research uncovers distinct historical developments in Transdanubia, emphasizing the complex interactions and genetic integration among Hun, Avar, and Hungarian groups during and after the conquest period.
View Article and Find Full Text PDF

Thermal Softening Measurements of Refractory High-Entropy Alloys.

Materials (Basel)

November 2024

H-ION Kft., Konkoly-Thege Miklós út 29.-33., H-1121 Budapest, Hungary.

Home-built equipment will be presented able to measure the thermal expansion (with a flat indenter) and indentation depth (with a pointed indenter) up to 1100 °C. In dilatometer mode, the allotropic phase transformations can be studied. For hardness, a Rockwell-type measurement is adopted.

View Article and Find Full Text PDF
Article Synopsis
  • The CMS experiment conducted a search for charge-parity violation in decays using proton-proton collision data from 2018, analyzing around 10 billion events with b hadrons decaying into charm hadrons.
  • The flavor of the neutral D meson was determined through the charge of pions in the reconstructed decays, and an asymmetry measurement in the decays was reported, taking into account various uncertainties.
  • This research marks the first asymmetry measurement by the CMS in the charm sector and the first to use a fully hadronic final state in such analyses.
View Article and Find Full Text PDF

Objective: The aim of this research study was to formulate a cost-effective, stable, less toxic and more efficacious intravenous nanoformulation that could rapidly augment the process of hemostasis.

Significance: Silver nanoparticles (AgNPs) evoked platelet activation, whereas alum (AM) neutralized the plasma proteins, causing blood coagulation. Tranexamic acid (TA) inhibited fibrinolysis and stabilized the formed blood clot.

View Article and Find Full Text PDF

Drug resistance is a major obstacle in cancer treatment. Herein, four novel organometallic complexes, with the general formula [Ru(η--cymene)(HL)Cl]Cl and [Rh(η-CMe)(HL)Cl]Cl, were developed to target multidrug-resistant (MDR) cancer cells, where HL denotes 8-hydroxyquinoline-derived Mannich bases (HQCl-pyr and HQCl-pip). The aim of the complexation was to obtain compounds with improved drug-like properties.

View Article and Find Full Text PDF

The NanoPlasmonic Laser Induced Fusion Energy (NAPLIFE) project proposed fusion by regulating the laser light absorption via resonant nanorod antennas implanted into hydrogen rich urethane acrylate methacrylate (UDMA) and triethylene glycol dimethylacrylate (TEGDMA) copolymer targets. In part of the tests, boron-nitride (BN) was added to the polymer. Our experiments with resonant nanoantennas accelerated protons up to 225 keV energy.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on detecting multijet signatures from proton-proton collisions at a high energy of 13 TeV, analyzing a dataset totaling 128 fb^{-1}.
  • A special data scouting method is utilized to pick out events with low combined momentum in jets.
  • This research is pioneering in its investigation of electroweak particle production in R-parity violating supersymmetric models, particularly examining hadronically decaying mass-degenerate higgsinos, and it broadens the limits on the existence of R-parity violating top squarks and gluinos.
View Article and Find Full Text PDF

Azimuthal orientation and handedness dependence of the optical responses, accompanied by asymmetric transmission and asymmetric dichroism, were demonstrated on multilayers constructed with subwavelength periodic arrays of Babinet complementary miniarrays, illuminated by linearly and circularly polarized light. In case of single-sided illumination asymmetric optical responses were observed at the spectral location of maximal cross-polarization that is accompanied by radiative electric dipoles and weak, slowly-rotating in-plane magnetic dipoles on the nano-objects; where the outgoing waves are elliptically (almost circularly) polarized. The negative index material phenomenon was demonstrated, where the electric and magnetic dipoles overlap both spatially and spectrally.

View Article and Find Full Text PDF

Analyzing AZ-non-Maxwellian distributions in Earth's magnetosphere: MMS observations.

Sci Rep

November 2024

Physics Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia.

A study of velocity distribution function in Earth's magnetosphere is conducted using high-resolution measurements from the Magnetospheric Multiscale Spacecraft (MMS). The analysis focuses on the AZ-non-Maxwellian distribution that is a complex velocity-space structure, exhibiting a power-law distribution of moments. By imposing constraints on the spectral indices of the AZ-velocity distribution, the most suitable distribution for modeling Earth's magnetosphere is determined.

View Article and Find Full Text PDF

Conventional drug delivery systems often suffer from non-specific distribution and limited therapeutic efficacy, leading to significant side effects. To address these challenges, we developed magnetoelectric, cobalt ferrite@barium titanate (CFO@BTO) nanofibers (NFs), with a core-shell structure for targeted anticancer drug delivery. The electrospinning method was employed to synthesize polymeric NFs based on magnetoelectric core-shell nanostructures.

View Article and Find Full Text PDF

The first search for soft unclustered energy patterns (SUEPs) is performed using an integrated luminosity of 138  fb^{-1} of proton-proton collision data at sqrt[s]=13  TeV, collected in 2016-2018 by the CMS detector at the LHC. Such SUEPs are predicted by hidden valley models with a new, confining force with a large 't Hooft coupling. In events with boosted topologies, selected by high-threshold hadronic triggers, the multiplicity and sphericity of clustered tracks are used to reject the background from standard model quantum chromodynamics.

View Article and Find Full Text PDF

Loss-Induced Quantum Information Jet in an Infinite Temperature Hubbard Chain.

Phys Rev Lett

November 2024

Department of Theoretical Physics, Institute of Physics, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary.

Information propagation in the one-dimensional infinite temperature Hubbard model with a dissipative particle sink at the end of a semi-infinite chain is studied. In the strongly interacting limit, the two-site mutual information and the operator entanglement entropy exhibit a rich structure with two propagating information fronts and superimposed interference fringes. A classical reversible cellular automaton model quantitatively captures the transport and the slow, classical part of the correlations but fails to describe the rapidly propagating information jet.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the behavior of nonspherical particles, particularly elongated ones, in shear flow, building on the historical work of Jeffery which described their motion.
  • It employs Langevin simulations and the Fokker-Planck equation to analyze how these particles respond to noise and calculates key parameters that represent their ordering behaviors, such as nematic ordering and biaxiality.
  • The research finds that as noise decreases or Péclet number increases, nematic order improves, while biaxiality peaks at a certain value, and it also reveals that particles in 3D rotate faster than in 2D under the same noise conditions.
View Article and Find Full Text PDF

Most synthetic self-assemblies grow indefinitely into size-unlimited structures, whereas some biological self-assemblies autonomously regulate their size and shape. One mechanism of such self-regulation arises from the chirality of building blocks, inducing their mutual twisting that is incompatible with their long-range ordered packing and thus halts the assembly's growth at a certain stage. This self-regulation occurs robustly in thermodynamic equilibrium rather than kinetic trapping, and therefore is attractive yet elusive.

View Article and Find Full Text PDF

Dynamics of Photoinduced Charge Carriers in Metal-Halide Perovskites.

Nanomaterials (Basel)

October 2024

Department of Physics, Institute of Physics, Budapest University of Technology and Economics, Műegyetem Rkp. 3., H-1111 Budapest, Hungary.

The measurement and description of the charge-carrier lifetime (τc) is crucial for the wide-ranging applications of lead-halide perovskites. We present time-resolved microwave-detected photoconductivity decay (TRMCD) measurements and a detailed analysis of the possible recombination mechanisms including trap-assisted, radiative, and Auger recombination. We prove that performing injection-dependent measurement is crucial in identifying the recombination mechanism.

View Article and Find Full Text PDF

The first search for the Z boson decay to ττμμ at the CERN LHC is presented, based on data collected by the CMS experiment at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 138  fb^{-1}. The data are compatible with the predicted background. For the first time, an upper limit at the 95% confidence level of 6.

View Article and Find Full Text PDF