14 results match your criteria: "King Saud University Riyadh 11451 Kingdom of Saudi Arabia.[Affiliation]"

The precise manipulation of electromagnetic and thermoelectric characteristics in the miniaturization of electronic devices offers a promising foundation for practical applications in quantum computing. Double perovskites characterized by stability, non-toxicity, and spin polarization, have emerged as appealing candidates for spintronic applications. This study explores the theoretical elucidation of the influence of iridium's 5d electrons on the magnetic characteristics of SrAIrO (A = Y, Lu, Sc) with WIEN2k code.

View Article and Find Full Text PDF

New strategic chromophores with updated fine-tuning of previously reported BLD1 and BLD3 chromophores were designed. BLD1 and BLD3 have silicon functional groups on the donor unit, and the bridge has a good chance of self-assembling, so in the present study we fine-tuned the isolating groups to the bulky cyclic alkene to improve their dipole moment and organic electro-optic (OEO) properties as well. To demonstrate the impact of cyclic alkenes on the electron-donating groups in sensible NLO chromophore designs, a thorough analysis and comparison of the chromophore synthesis, UV-Vis calculations, solvatochromic behavior of the chromophore, DFT quantum mechanical calculations, thermal stabilities, and much lower dipole moments was conducted.

View Article and Find Full Text PDF

Chemical environment and precursor-coordinating molecular interactions within a perovskite precursor solution can lead to important implications in structural defects and crystallization kinetics of a perovskite film. Thus, the opto-electronic quality of such films can be boosted by carefully fine-tuning the coordination chemistry of perovskite precursors controllable introduction of additives, capable of forming intermediate complexes. In this work, we employed a new type of ligand, namely 1-phenylguanidine (PGua), which coordinates strongly with the PbI complexes in the perovskite precursor, forming new intermediate species.

View Article and Find Full Text PDF

Zirconium oxide (ZrO) nanoparticles were introduced onto cellulose nanofibers after being covalently functionalized with mercaptoacetic acid. We experimentally demonstrate that the nanocomposite is capable of selectively capturing Hg(ii) from aqueous samples down to trace level concentrations. Density functional theory (DFT) calculations indicate that energetically favorable R-S → Hg ← O-R bidentate complex formation enhances the rapid adsorption, leading to selective extraction of Hg(ii).

View Article and Find Full Text PDF

Carbon nanomaterials exhibit exceptional properties and broad horizon applications, where graphene is one of the most popular allotropes of this family due to its astounding performance in every stratum vis-à-vis other classical materials. The large surface area of 2630 m g, high electrical conductivity, and electron mobility of non-toxic graphene nanomaterials serve as the building blocks for supercapacitor studies. In this article, comparative studies are carried out between electrochemically exfoliated graphene sheets (GSs), solvothermally synthesized graphene quantum dots (GQDs) and acid refluxed carbon nanotubes (CNTs) as an energy storage electrode nanomaterial through cyclic voltammetry (CV).

View Article and Find Full Text PDF

Defect rich molybdenum disulfide (MoS) nanosheets were hydrothermally synthesized and their potential for ultrasound assisted dispersive solid phase microextraction of trace Hg(ii) ions was assessed. Ultrasonic dispersion allows the MoS nanosheets to chelate rapidly and evenly with Hg(ii) ions and results in improving the precision and minimizing the extraction time. The multiple defect rich surface was characterized by X-ray diffraction and high-resolution transmission electron microscopy.

View Article and Find Full Text PDF

The construction of a UV-Vis and direct sunlight functioning photocatalyst is a puzzling task for organic pollutant removal. Herein, we have fabricated Gd/N co-doped ZnO nanoparticles for the first-time using a simple co-precipitation method for photocatalytic degradation application. The heteroatom doping enhances the light absorption ability and acts as a photo-induced electron-hole separator by creating a trap state.

View Article and Find Full Text PDF

The green mechanism for the synthesis of nanoparticles and their application to the wastewater treatment is of inordinate curiosity to the research community. Herein we outline a novel method for the synthesis of silver nanoparticles a green route using alginate-guar gum blend (GG-Alg@Ag) and their application to degrade methylene blue (MB) dye. The synthesized material was characterized by FTIR, XRD, SEM-EDX, TEM, TGA-DTG, AFM, and UV-vis techniques.

View Article and Find Full Text PDF

Fluorescent labeling is limited to certain molecules and alters biomolecule functionality. A new class of nanomaterial with anticancer activity and fluorescence properties has been designed and prepared. This nanotherapeutic conjugate of natural molecules has a selective binding site in cancer cell lines.

View Article and Find Full Text PDF

Pyruvate dehydrogenase kinase 3 (PDK3) plays a central role in the cancer metabolic switch through the reversible phosphorylation of pyruvate dehydrogenase complex thereby blocking the entry of pyruvate for its catabolism into the TCA cycle, and thus it is considered as an important drug target for various types of cancers. We have successfully expressed full length human PDK3 and investigated its interaction mechanism with dietary polyphenols in the search for potential inhibitors. Molecular docking analysis revealed that the selected compounds preferentially bind to the ATP-binding pocket of PDK3 and interact with functionally important residues.

View Article and Find Full Text PDF

The continuously increasing incidence rates of cancer and infectious diseases are open threats to the sustainable survival of animals and humans. In the last two decades, the demands of nanomaterials as modern therapeutic agents have increased. In this study, biogenic zinc oxide nanoparticles (ZnO NPs) were developed from aqueous leaf extract (POLE) and characterized using modern methods and tools, such as electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy and UV-vis spectroscopy, which indicated the formation of very pure, spherical NPs approximately 90 nm in size.

View Article and Find Full Text PDF

1,2,3-Triazole-quinazolin-4(3)-one conjugates: evolution of ergosterol inhibitor as anticandidal agent.

RSC Adv

November 2018

Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia New Delhi-110025 India

The present study describes the synthesis of 1,2,3-triazole-quinazolinone conjugates (5a-q) from ethyl 4-oxo-3-(prop-2-ynyl)-3,4-dihydroquinazoline-2-carboxylate and phenyl azide/substituted phenyl azides employing Cu(i) catalysed Huisgen 1,3-dipolar cycloaddition. The corresponding acids (6a-q) were obtained by hydrolysis of esters (5a-q) to study the effect of these functionalities on the biological activity. All synthesized compounds were screened for anticandidal evaluation against , and strains.

View Article and Find Full Text PDF

Facile synthesis of micellar "nano" indole heterocyclic anti-cancer compounds is described. The synthesized compounds (11-23) were characterized by UV-VIS, H NMR, FT-IR and mass spectroscopy. The binding energies of DNA-compound adducts varied from -20.

View Article and Find Full Text PDF

TiO is a compound of great importance due to its remarkable catalytic and distinctive semiconducting properties. It is also a chemically stable, non-toxic and biocompatible material. Nano TiO is strong oxidizing agent with a large surface area and, hence, high photo-catalytic activities.

View Article and Find Full Text PDF