13 results match your criteria: "King Faisal University P.O. Box 400 Al-Ahsa 31982 Saudi Arabia.[Affiliation]"

Water is a fundamental resource, yet various contaminants increasingly threaten its quality, necessitating effective remediation strategies. Sustainable polymeric adsorbents have emerged as promising materials in adsorption-based water remediation technologies, particularly for the removal of contaminants and deactivation of water-borne pathogens. Pathogenetic water contamination, which involves the presence of harmful bacteria, viruses, and other microorganisms, poses a significant threat to public health.

View Article and Find Full Text PDF

A series of novel 1,2,4-oxadiazole-based derivatives were synthesized and evaluated for their potential anti-Alzheimer disease activity. The results revealed that compounds 2b, 2c, 2d, 3a, 4a, 6, 9a, 9b, and 13b showed excellent inhibitory activity against acetylcholinesterase (AChE) with IC values in the range of 0.0158 to 0.

View Article and Find Full Text PDF

Layered double hydroxides (LDH) are promising 2D nanomaterials being investigated for several engineering and biomedical applications. In this work, quinary Zr Al Fe Co Ni LDH and its Al Fe Co Ni LDH quaternary and Fe Co Ni LDH tertiary roots were prepared and characterized. All samples showed an aggregated, layered morphology with zero surface charge and approximately 300 nm of hydrodynamic size.

View Article and Find Full Text PDF
Article Synopsis
  • The study introduces a BODIPY-based dye modified with an electronegative SF group, designed for use in photocathodes of tandem dye-sensitized solar cells (DSSCs).
  • The dye exhibits enhanced charge transfer from the NiO cathode to the redox mediator due to its push-pull structure, along with effective anchoring to the oxide surface via a Knoevenagel condensation reaction.
  • The dye demonstrated promising room-temperature synthesis and high yield, achieving a power conversion efficiency of 0.066% in p-DSSCs, with a short circuit photocurrent of 3.84 mA/cm² and an open circuit voltage of 58 mV.
View Article and Find Full Text PDF

In this work, aluminum/starch (St)-doped CaO nanoparticles (NPs) were synthesized by a co-precipitation method to degrade harmful dyes in various pH media. Systematic characterization was performed to investigate the influence of Al/St dopants on the composition, crystal structure, functional groups present, optical characteristics, and morphology of CaO NPs. Further hybrid density functional analyses corroborated that the band gap energy was reduced as the Al concentration in starch-doped CaO is increased.

View Article and Find Full Text PDF

Degradation in the presence of visible light is essential for successfully removing dyes from industrial wastewater, which is pivotal for environmental and ecological safety. In recent years, photocatalysis has emerged as a prominent technology for wastewater treatment. This study aimed to improve the photocatalytic efficiency of synthesized TiO quantum dots (QDs) under visible light by barium (Ba) doping.

View Article and Find Full Text PDF

The present study describes a new strategy for modifying the structure of zinc oxide for removing colored pollutants from water after a few minutes of light irradiation. In this context, the magnetic nanocomposite was combined with the nanolayers of Al/Zn to build inorganic-magnetic nanohybrids. The long chains of hydrocarbons of stearic acid have been used as pillars to widen interlayered spacing among the nanolayers to build organic-magnetic-inorganic nanohybrids.

View Article and Find Full Text PDF

Novel tantalum (Ta) and chitosan (CS)-doped CuO nanorods (NRs) were synthesized using a single step co-precipitation route. Different concentrations (2 and 4%) of Ta were used in fixed amounts of CS and CuO to examine their catalytic activity and antimicrobial potential. For critical analysis, synthesized NRs were systematically examined using XRD, FTIR HRTEM, EDS, UV-Vis and PL spectroscopy.

View Article and Find Full Text PDF
Article Synopsis
  • Radical hydroxymethylation using formaldehyde is difficult due to the reversible and energy-absorbing nature of the addition process.
  • The authors develop a method that combines alkyl iodides with formaldehyde by using photocatalysis and a phosphine additive.
  • This approach uses halogen-atom transfer from α-aminoalkyl radicals to create a stable product by converting iodides and trapping a transient radical, ultimately producing the desired hydroxymethylated compound.
View Article and Find Full Text PDF

The generation of aryl radicals from the corresponding halides by redox chemistry is generally considered a difficult task due to their highly negative reduction potentials. Here we demonstrate that α-aminoalkyl radicals can be used as both initiators and chain-carriers for the radical coupling of aryl halides with pyrrole derivatives, a transformation often employed to evaluate new highly reducing photocatalysts. This mode of reactivity obviates for the use of strong reducing species and was also competent in the formation of sp C-P bonds.

View Article and Find Full Text PDF

This work aims at the synthesis of a polymer of poly-trimesoyl chloride and polyethyleneimine grafted on carbon fibers (PCF) derived from palm. The obtained PCF was characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX) for its structural properties. The obtained PCF was then evaluated for the removal of mercury (Hg(ii)) from aqueous solutions using batch adsorption studies at four different temperatures (298, 308, 318, and 328 K).

View Article and Find Full Text PDF