160 results match your criteria: "King Fahd University of Petroleum Minerals (KFUPM)[Affiliation]"

Sodium alginate and its modified counterpart as sustainable-based corrosion inhibitors for N80 pipeline carbon steel: Experimental and theoretical approach.

Int J Biol Macromol

November 2024

Sustainable and Resilient Materials Lab, Center for Integrative Petroleum Research (CIPR), College of Petroleum Engineering & Geosciences (CPG), King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia. Electronic address:

Sodium alginate is a highly promising biopolymer for use as an eco-friendly/green corrosion inhibitor (CI), despite its limited solubility. In this study, a green and water-soluble modified sodium alginate (MSA) salt was synthesized and employed as a CI on pipeline N80 carbon steel (N80CS) in artificial sea water (ASW) medium. Various analytical tools related to surface and structure were utilized to describe the properties of the newly synthesized MSA polymer.

View Article and Find Full Text PDF
Article Synopsis
  • The text indicates that there is a correction being made to a previously published article.
  • The DOI (Digital Object Identifier) provided leads to the original article, which may have errors or issues that need addressing.
  • This correction is important for maintaining the accuracy and integrity of the research published in the article.
View Article and Find Full Text PDF

Sample loading in gel electrophoresis using adapted 3D printers.

Anal Biochem

February 2025

Laboratory for Optics and Applied Mechanics, Department of Mechanical & Aerospace Engineering, Monash University, Clayton, Victoria, 3800, Australia. Electronic address:

In gel electrophoresis, samples that are dispensed too high above or too low into the wells result in sub-optimal outcomes. Here, an adapted 3D printer liquid handler equipped with an optical sensor was found to attain vertical sample delivery positionings at a standard deviation over mean ratio of 0.008.

View Article and Find Full Text PDF

Precipitation polymerization method was used to synthesize chitosan based poly[chitosan-N-isopropylmethacrylamide-acrylic acid] [P(CS-NI-AA)] microgel particles. Synthesized P(CS-NI-AA) microgel particles were utilized as micro-reactors for the fabrication of silver nanoparticles (AgNPs) inside the structure of microgels through chemical reduction of Ag ions using NaBH as reducing agent. P(CS-NI-AA) and Ag-P(CS-NI-AA) systems were analyzed using various characterization techniques like scanning electron microscopy (SEM), ultraviolet-visible (UV-visible) spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy.

View Article and Find Full Text PDF

Driver fatigue or drowsiness detection techniques can significantly enhance road safety measures and reduce traffic accidents. These approaches used different sensor technologies to acquire the human physiological and behavioral characteristics to investigate the driver's vigilance state. Although the driver's vigilance detection technique has attracted significant interest recently, few studies have been conducted to review it systematically.

View Article and Find Full Text PDF

Exploring NRB Biofilm Adhesion and Biocorrosion in Oil/Water Recovery Operations Within Pipelines.

Bioengineering (Basel)

October 2024

Laboratory of Theoretical Physics and Materials Physics (LPTPM), Department of Process Engineering, Faculty of Technology, Hassiba Benbouali University of Chlef, Hay Salem 02000, Algeria.

Microbially influenced corrosion represents a critical challenge to the integrity and durability of carbon steel infrastructure, particularly in environments conducive to biofilm formation by nitrate-reducing bacteria (NRB). This study investigated the impact of NRB biofilms on biocorrosion processes within oil/water recovery operations in Algerian pipelines. A comprehensive suite of experimental and analytical techniques, including microbial analysis, gravimetric methods, and surface characterization, were employed to elucidate the mechanisms of microbially influenced corrosion (MIC).

View Article and Find Full Text PDF

Electrochemical water splitting is a promising approach for hydrogen evolution reactions (HER); however, the oxygen evolution reaction (OER) remains a major bottleneck due to its high energy requirements. High-performance electrocatalysts capable of facilitating HER, OER, and overall water splitting (OWS) are highly needed to improve OER kinetics. In this work, we synthesized a trimetallic heterostructure of Ru, Ni, and Co incorporated into N-doped carbon (denoted as Ru/Ni/Co@NC) by first synthesizing Ni/Co@NC from Ni-ZIF-67 polyhedrons via high-temperature carbonization, followed by Ru doping using the galvanic replacement method.

View Article and Find Full Text PDF

Solar stills: A review for water scarcity solutions.

Heliyon

October 2024

Aleksander Butlerov Institute of Chemistry, Kazan Federal University, 1/29 Lobachevskogo Str., Kazan, 420008, Russian Federation.

Article Synopsis
  • Solar stills are an important technology for providing clean water, especially in areas with limited water and energy resources, and this study analyzes different designs for their efficiency.
  • The research examines various factors such as reflectors, wick materials, and absorber plate designs that can improve water output and energy use in solar stills.
  • It also highlights the need for further studies on integrating heat storage and advanced modeling techniques to optimize solar still performance and effectively address global water scarcity challenges.
View Article and Find Full Text PDF

RuCo@C Hollow Nanoprisms Derived from ZIF-67 for Enhanced Hydrogen and Oxygen Evolution Reactions.

ChemSusChem

October 2024

Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (HTCM), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia.

Zeolitic imidazolate frameworks (ZIFs) are commonly used to create complex hollow structures for energy applications. This study presents a simple method to produce a novel hollow nanoprism Co@C hierarchical composite from ZIF-67 through high-temperature treatment at 800 °C. This composite serves as a platform for Ru nanoparticle deposition, forming RuCo@C hollow nanoprism (RuCo@C HNP).

View Article and Find Full Text PDF

We measured the temporal voltage response of NbTi superconducting filaments with varied nanoscale thicknesses to step current pulses that induce non-equilibrium superconducting states governed by a hot spot mechanism. Such detected voltage emerges after a delay time td, which is intimately connected to the gap relaxation and heat escape times. By employing time-dependent Ginzburg-Landau theory to link the delay time to the applied current, we determined that the gap relaxation time depends linearly on film thickness, aligning with the acoustic mismatch theory for phonon transmission at the superconductor-substrate interface.

View Article and Find Full Text PDF

This review was conducted to highlight the most influential factors and specify the trends reducing uncertainty and increasing the accuracy of soil and water assessment tool (SWAT)-based hydrological models. Although the resolution of input data on the results of SWAT-based hydrological models has been extensively determined. There is still a gap in providing comprehensive review framework to be emerged for identifying the impact of the data resolution and accuracy.

View Article and Find Full Text PDF
Article Synopsis
  • * This research utilized machine learning techniques to evaluate various models for assessing how well impurities, particularly CIP, are removed from contaminated water by adsorbents, focusing on performance metrics to gauge the algorithms' effectiveness.
  • * The HistGradientBoosting (HGB) model emerged as the most efficient, achieving a 99.28% CIP adsorption rate under optimal conditions, suggesting that combining advanced ML methods with nano adsorbents can significantly tackle antibiotic pollution in water systems.
View Article and Find Full Text PDF

The advent of precision diagnostics in pediatric dentistry is shifting towards ensuring early detection of dental diseases, a critical factor in safeguarding the oral health of the younger population. In this study, an innovative approach is introduced, wherein Discrete Wavelet Transform (DWT) and Generative Adversarial Networks (GANs) are synergized within an Image Data Fusion (IDF) framework to enhance the accuracy of dental disease diagnosis through dental diagnostic systems. Dental panoramic radiographs from pediatric patients were utilized to demonstrate how the integration of DWT and GANs can significantly improve the informativeness of dental images.

View Article and Find Full Text PDF

Addressing global freshwater scarcity requires innovative technological solutions, among which desalination through thin-film composite polyamide membranes stands out. The performance of these membranes plays a vital role in desalination, necessitating advanced predictive modeling for optimization. This study harnesses machine learning (ML) algorithms, including support vector machine (SVM), neural networks (NN), linear regression (LR), and multivariate linear regression (MLR), alongside their ensemble techniques to predict and enhance average water flux (AWF) and average salt rejection (ASR) essential metrics of desalination efficiency.

View Article and Find Full Text PDF

Gene therapy is the technique of inserting foreign genetic elements into host cells to achieve a therapeutic effect. Although gene therapy was initially formulated as a potential remedy for specific genetic problems, it currently offers solutions for many diseases with varying inheritance patterns and acquired diseases. There are two major groups of vectors for gene therapy: viral vector gene therapy and non-viral vector gene therapy.

View Article and Find Full Text PDF

In the quest for efficient and stable oxygen evolution catalysts (OECs) for photoelectrochemical water splitting, the surface modification of BiVO is a crucial step. In this study, a novel and robust OEC, based on 3-(bis(pyridin-2-ylmethyl) amino) propanoic acid bifunctional linker known as dipicolyl alanine acid (DPAA) and cobalt ions, is prepared and fully characterized. The DPAA is anchored to the surface of BiVO and utilized to tether cobalt ions.

View Article and Find Full Text PDF

Fault detection and isolation in unmanned aerial vehicle (UAV) propellers are critical for operational safety and efficiency. Most existing fault diagnosis techniques rely basically on traditional statistical-based methods that necessitate better approaches. This study explores the application of untraditional feature extraction methodologies, namely Permutation Entropy (PE), Lempel-Ziv Complexity (LZC), and Teager-Kaiser Energy Operator (TKEO), on the PADRE dataset, which encapsulates various rotor fault configurations.

View Article and Find Full Text PDF

Highly efficient photocatalysts can be fabricated using favorable charge transfer nanocomposite channel structures. This study adopted pulsed laser ablation in liquid (PLAL) to obtain rGO-bridged TiO/g-CN (rGO-TiO/g-CN) photocatalytic Z-scheme without the need for noble metals. In addition to evaluating the resulting nanocomposite (comprising rGO nanosheets, TiO nanotubes, and g-CN nanosheets) CO reduction effectiveness, its chemical, morphological, structural, and optical characteristics were examined using various analytical techniques.

View Article and Find Full Text PDF

Synthesis of Thiol Functionalized MOF-808 and its Efficiency for Mercury Removal.

Chem Asian J

November 2024

Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.

A thiol-functionalized MOF-808 was produced and used to remove mercury by post-synthetic modification using 6-mercaponicotinic acid (6mna). Parent MOF-808 was impregnated for varied periods in the 6mna solution to create modified MOF-808 materials, known as MOF-808-6mna-x, where x refers to the impregnation time. Diffraction and several spectroscopic techniques were employed to quantify and confirm the coordination of 6mna into MOF-808 framework.

View Article and Find Full Text PDF

The inhibition effect of symmetrical Ball - type Zinc Phthalocyanine on Aluminum in 1mol/L hydrochloric acid was analyzed by electrochemical techniques. A novel ball-type zinc phthalocyanine (Zn-Pc) inhibitor has been synthesized and verified utilizing FTIR, nuclear magnetic resonance (H NMR and C NMR), MALDI-TOF MS, and absorption spectroscopy (UV-Vis). In addition, laser-induced breakdown and photoluminescence spectroscopy were employed for additional study.

View Article and Find Full Text PDF

Investigating the complex interactions among physicochemical variables that influence the adsorptive removal of pollutants is a challenge for conventional one-variable-at-a-time (OVAT) batch methods. The adoption of machine learning-based chemometric prediction models is expected to be more accurate than the conventional method. This study proposed a novel modeling framework for predicting and optimizing the adsorptive removal of N-Nitrosodiphenylamine (NDPhA).

View Article and Find Full Text PDF

To mitigate anthropogenic CO emissions and address the climate change effects, carbon capture and storage by mineralization (CCSM) and industrial mineral carbonation are gaining attraction. Specifically, in-situ carbon mineralization in the subsurface geological formations occurs due to the transformation of silicate minerals into carbonates (e.g.

View Article and Find Full Text PDF

Chemical-based Hydrogen Storage Systems: Recent Developments, Challenges, and Prospectives.

Chem Asian J

August 2024

Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum & Minerals KFUPM, Dhahran, 31261, Saudi Arabia.

Hydrogen (H) is being acknowledged as the future energy carrier due to its high energy density and potential to mitigate the intermittency of other renewable energy sources. H also ensures a clean, carbon-neutral, and sustainable environment for current and forthcoming generations by contributing to the global missions of decarbonization in the transportation, industrial, and building sectors. Several H storage technologies are available and have been employed for its secure and economical transport.

View Article and Find Full Text PDF