2,791 results match your criteria: "King Fahd University of Petroleum & Minerals Dhahran Saudi Arabia fahhad.alharbi@kfupm.edu.sa.[Affiliation]"

Microbial fuel cells to monitor natural attenuation around groundwater plumes.

Environ Sci Pollut Res Int

January 2025

School of Natural and Built Environment, Queen's University Belfast, Belfast, Northern Ireland, BT7 1NN, UK.

This research presents a straightforward and economically efficient design for a microbial fuel cell (MFC) that can be conveniently integrated into a borehole to monitor natural attenuation in groundwater. The design employs conventional, transparent, and reusable PVC bailers with graphite tape and granular activated carbon to create high surface area electrodes. These electrodes are connected across redox environments in nested boreholes through a wire and variable resistor setup.

View Article and Find Full Text PDF

The design and synthesis of nonlinear optical (NLO) materials are rapidly growing fields in optoelectronics. Considering the high demand for newly designed materials with superior optoelectronic characteristics, we investigated the doping process of Group-IIIA elements (namely, B, Al and Ga) onto alkali metal (AM = Li, Na and K)-supported COLi (AM@COLi) complexes to enhance their NLO response. The AM-COLi complexes retained their structural features following interaction with the Group-IIIA elements.

View Article and Find Full Text PDF

Pollution monitoring in surface water using field observational procedure is a challenging matter as it is time consuming, and needs a lot of efforts. This study addresses the challenge of efficiently monitoring and predicting water pollution using a GIS-based artificial neural network (ANN) to detect heavy metal (HM) pollution in surface water and effect of wastewater required discharge on the Euphrates River in Al-Diwaniyah City, Iraq. The study established using 40 water sampling stations and incorporates Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-OES) to assess HM levels.

View Article and Find Full Text PDF

This review explores the diverse applications of nitrogen-doped carbon derived from Albizia procera, known as white siris. Native to the Indian subcontinent and tropical Asia, this species thrives in varied conditions, contributing to sustainable development. The nitrogen-rich leaves of Albizia procera are an excellent source for synthesizing nitrogen-doped carbon, which possesses remarkable properties for advanced technologies.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on how surfactants can improve oil recovery by reducing interfacial tension between crude oil and injected water, particularly under high-pressure and high-temperature (HPHT) conditions.
  • It found that as pressure increases and gas/oil ratios (GOR) rise, water solubilization in microemulsions increases significantly, while oil solubilization decreases.
  • The research established optimal salinity levels for different GORs, demonstrating that higher GOR values lead to lower optimal salinity and reduced microemulsion generation, which is crucial for enhancing oil recovery practices in the petroleum industry.
View Article and Find Full Text PDF

Hydrogen (H) offers a less carbon-intensive energy production method than natural gas. The potential of utilizing hydrogen at a large scale within the future energy mix to fuel the world opens the door to investigating hydrogen production from heavy and extra-heavy oil reservoirs. Various reaction mechanisms are involved in the in situ combustion gasification of heavy oil to produce sustainable and low carbon intensive hydrogen.

View Article and Find Full Text PDF

Automated segmentation and detection of tumors in CT scans of the liver and kidney have a significant potential in assisting clinicians with cancer diagnosis and treatment planning. However, current approaches, including state-of-the-art deep learning ones, still face many challenges. Many tumors are not detected by these approaches when tested on public datasets for tumor detection and segmentation such as the Kidney Tumor Segmentation Challenge (KiTS) and the Liver tumor segmentation challenge (LiTS).

View Article and Find Full Text PDF

Predicting student self-efficacy in Muslim societies using machine learning algorithms.

Front Big Data

December 2024

Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, United States.

Introduction: Self-efficacy is a critical determinant of students' academic success and overall life outcomes. Despite its recognized importance, research on predictors of self-efficacy using machine learning models remains limited, particularly within Muslim societies. This study addresses this gap by leveraging advanced machine learning techniques to analyze key factors influencing students' self-efficacy.

View Article and Find Full Text PDF

Air pollution monitoring and modeling are the most important focus of climate and environment decision-making organizations. The development of new methods for air quality prediction is one of the best strategies for understanding weather contamination. In this research, different air quality parameters were forecasted, including Carbon Monoxide (CO), Nitrogen Monoxide (NO), Nitrogen Dioxide (NO), Ozone (O), Sulphur Dioxide (SO), Fine Particles Matter (PM), Coarse Particles Matter (PM), and Ammonia (NH).

View Article and Find Full Text PDF

With the continuous clamor for a reduction in embodied carbon in cement, rapid solution to climate change, and reduction to resource depletion, studies into substitute binders become crucial. These cementitious binders can potentially lessen our reliance on cement as the only concrete binder while also improving concrete functional properties. Finer particles used in cement microstructure densify the pore structure of concrete and enhance its performance properties.

View Article and Find Full Text PDF

This study investigates the development of a novel CO-foamed viscoelastic gel-based fracturing fluid to address the challenges of high-temperature formations. The influence of various parameters, including surfactant type and concentration, gas fraction, shear rate, water salinity, temperature, and pressure, on foam viscosity was systematically explored. Rheological experiments were conducted using a high-pressure/high-temperature (HPHT) rheometer at 150 °C and pressures ranging from 6.

View Article and Find Full Text PDF

A proposed framework to address metric inflation in research publications.

Account Res

December 2024

College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.

Background: Since the advent of online research metrics, which began with Web of Science in 1997, these metrics have been increasingly used to rank researchers and universities. Over the last two decades, the easy access to research metrics has greatly benefitted the academic community and beyond by providing quantitative measures for ranking researchers, universities and departments. However, this accessibility, accompanied by a tendency to quantitatively evaluate research quality and impact, has also shifted the focus toward practices aimed at enhancing research metrics rather than pursuing high-quality, potentially path-breaking research.

View Article and Find Full Text PDF

Glioblastoma (GBM) is one of the most malignant forms of cancer with the lowest survival ratio. Our study aims to utilize an integrated bioinformatic analysis to identify hub genes against GBM and explore the active phytochemicals with drug-like properties in treating GBM. The study employed databases of DisGenet, GeneCards, and Gene Expression Omnibus to retrieve GBM-associated genes, revealing 142 overlapping genes.

View Article and Find Full Text PDF

Nitrate (NO ) contamination from industrial, agricultural, and anthropogenic activities poses significant risks to human health and ecosystems. While traditional NO remediation methods are effective, they often generate secondary pollutants and incur high costs. Electrochemical NO reduction (ECNR) offers a sustainable alternative, converting NO into environmentally benign nitrogen (N) or valuable ammonia (NH).

View Article and Find Full Text PDF

This study introduces a UiO-66-NH2/Tannic acid/Polyvinylidene fluoride (UTP) composite membrane for efficient oil-water separation. Pristine polyvinylidene fluoride (PVDF) membranes, due to their hydrophobic nature, tend to foul during oil-in-water emulsion separation. By incorporating the metal-organic framework (MOF) UiO-66-NH2 and stabilizing it with tannic acid (TA) and polyvinyl alcohol (PVA), the membrane's hydrophilicity and antifouling properties were significantly enhanced.

View Article and Find Full Text PDF

Estimating the rate of penetration (ROP) is one of most critical tasks for evaluating the efficiency and profitability of drilling operation, which will aim in decision-making related to well planning, time estimation, cost estimation, bit selection, operational troubles, and logistics in drilling operation. The rise in unconventional resource development underscores the need for accurate ROP prediction to optimize drilling operations in these valuable reserves. ROP prediction and optimization in unconventional hydrocarbon reservoirs are challenging due to the formations' heterogeneity, high strength, and brittleness.

View Article and Find Full Text PDF

Wetting characteristics of a hydrocarbon reservoir are generally quantified for cost-effective field development. The wetting process of rock by oil is a complex process involving reactions among compounds (rock, oil, and brine), the impact of environmental conditions (temperature, pressure, etc.), and treatment history (coring, transportation, etc.

View Article and Find Full Text PDF

In chemical-enhanced oil recovery (cEOR), surfactants are widely used but face significant stability challenges in high-salinity brine, where they often degrade or precipitate. Existing methods, such as adding cosurfactants, offer limited compatibility with anionic surfactants and raise economic concerns, creating a need for more robust solutions. This study introduces a novel approach to enhance the stability of anionic surfactants in extreme salinity conditions by incorporating silicon dioxide (SiO) nanoparticles (NPs).

View Article and Find Full Text PDF

Leber's congenital amaurosis (LCA) represents a set of rare and pervasive hereditary conditions of the retina that cause severe vision loss starting in early childhood. Targeted treatment intervention has become possible thanks to recent advances in understanding LCA genetic basis. While viral vectors have shown efficacy in gene delivery, they present challenges related to safety, low cargo capacity, and the potential for random genomic integration.

View Article and Find Full Text PDF

Toxic environmental pollutants are considered to be posed a major threat to human and aquatic systems. The fast advancement of the petrochemical and chemical industries has woken up rising worries concerning the pollution of water by contaminants including phenolic Bisphenol A (BPA), an endocrine-disrupting chemical (EDC). The intermediate BPA used in synthesis of certain plastics, polycarbonate polymers, polysulfone, and epoxy resins of various polyesters.

View Article and Find Full Text PDF

Designing dental crowns with computer-aided design software in dental laboratories is complex and time-consuming. Using real clinical datasets, we developed an end-to-end deep learning model that automatically generates personalized dental crown meshes. The input context includes the prepared tooth, its adjacent teeth, and the two closest teeth in the opposing jaw.

View Article and Find Full Text PDF

The sustainable treatment of petroleum-derived produced water (PW), a significant byproduct of oil and gas extraction, presents a persistent problem due to the presence of organic pollutants. This study examines the potential of the microalga Chlorella sorokiniana (C. sorokiniana) for the bioremediation of dissolved organic pollutants in PW.

View Article and Find Full Text PDF

Affective computing is a key research area in computer science, neuroscience, and psychology, aimed at enabling computers to recognize, understand, and respond to human emotional states. As the demand for affective computing technology grows, emotion recognition methods based on physiological signals have become research hotspots. Among these, electroencephalogram (EEG) signals, which reflect brain activity, are highly promising.

View Article and Find Full Text PDF

We describe a simple, cost-effective, green method for producing capped silver nanoparticles (Ag NPs) using a handheld portable mesh nebulizer. The precursor solution containing a 1:1 mixture of silver nitrate (AgNO) and ligand (glycerol or sodium alginate) was sprayed using the nebulizer. The Ag NPs were generated in the water microdroplets within a few milliseconds under ambient conditions without any external reducing agent or action of a radiation source.

View Article and Find Full Text PDF

In this study, the short-beam shear strength (SBSS) retention of two types of glass fiber-reinforced polymer (GFRP) bars-sand-coated (SG) and ribbed (RG)-was subjected to alkaline, acidic, and water conditions for up to 12 months under both high-temperature and ambient laboratory conditions. Comparative assessments were also performed on older-generation sand-coated (SG-O) and ribbed (RG-O1 and RG-O2) GFRP bars exposed to identical conditions. The results demonstrate that the new-generation GFRP bars, SG and RG, exhibited significantly better durability in harsh environments and exhibited SBSS retentions varying from 61 to 100% in SG and 90-98% in RG under the harshest conditions compared to 56-69% in SG-O, 71-80% in RG-O1, and 74-88% in RG-O2.

View Article and Find Full Text PDF