5,487 results match your criteria: "King Abdullah University of Science and Technology (KAUST); himanshu.mishra@kaust.edu.sa.[Affiliation]"

Certain coral individuals exhibit enhanced resistance to thermal bleaching, yet the specific microbial assemblages and their roles in these phenotypes remain unclear. We compared the microbial communities of thermal bleaching-resistant (TBR) and thermal bleaching-sensitive (TBS) corals using metabarcoding and metagenomics. Our multidomain approach revealed stable distinct microbial compositions between thermal phenotypes.

View Article and Find Full Text PDF

Ultra-Fast Moisture Sensor for Respiratory Cycle Monitoring and Non-Contact Sensing Applications.

Adv Mater

January 2025

Henry Royce Institute and Photon Science Institute, Department of Electrical and Electronic Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.

As human-machine interface hardware advances, better sensors are required to detect signals from different stimuli. Among numerous technologies, humidity sensors are critical for applications across different sectors, including environmental monitoring, food production, agriculture, and healthcare. Current humidity sensors rely on materials that absorb moisture, which can take some time to equilibrate with the surrounding environment, thus slowing their temporal response and limiting their applications.

View Article and Find Full Text PDF

Crafting Hollow Spheres via Bulk Ice Melting with ppb-Level Gas Sensing Performance.

J Am Chem Soc

January 2025

National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.

Ice melting, a common yet complex phenomenon, remains incompletely understood. While theoretical studies suggest that preexisting defects in ice generate "off-lattice" water molecules, triggering bulk ice melting, direct experimental evidence of their form has been lacking as the transparent and transient nature of ice poses significant challenges for observation with current techniques. Here, we introduce an ice-melting-induced lyophilization (IMIL) technique that employs graphene-based nanoprobes to replicate and track liquid evolution within melting bulk ice.

View Article and Find Full Text PDF

Two-dimensional transition metal dichalcogenides (2D TMDCs) can be combined with organic semiconductors to form hybrid van der Waals heterostructures. Specially, non-fullerene acceptors (NFAs) stand out due to their excellent absorption and exciton diffusion properties. Here, we couple monolayer tungsten diselenide (ML-WSe) with two well performing NFAs, ITIC, and IT-4F (fluorinated ITIC) to achieve hybrid architectures.

View Article and Find Full Text PDF

A Chromosome level assembly of pomegranate (Punica granatum L.) variety grown in arid environment.

Sci Data

January 2025

Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia.

The pomegranate (Punica granatum L.) is an ancient fruit-bearing tree known for its nutritional and antioxidant properties. They originated from the Middle East in regions having large farms including mountainous regions of Al-Baha in Saudi Arabia.

View Article and Find Full Text PDF

Understanding how structural modifications affect the photophysics of organic linkers is crucial for their integration into metal-organic frameworks (MOFs) for light-driven applications. This study explores the impact of varying the amine functional group position on two terephthalic acid derivatives─linker and linker ─by investigating their photophysics through a combination of steady-state and ultrafast laser spectroscopy and time-dependent density functional theory (TD-DFT) calculations. With tetrahydrofuran as the solvent, time-correlated single-photon counting revealed a 2-fold increase in the S excited-state lifetime of the molecule with the amine group at the meta position compared with that of the molecule with the amine group at the ortho position.

View Article and Find Full Text PDF

Materials exhibiting both metallic and semiconducting states, including two-dimensional transition metal dichalcogenides (TMDs), have numerous applications. We therefore investigate the effects of axial and shear strains on the phase energetics of pristine and striped TMDs using density functional theory and classical molecular dynamics simulations. We demonstrate that control of the phase distribution can be achieved by the integration of strain engineering and Kirigami techniques.

View Article and Find Full Text PDF

Employing density functional theory for ground state quantum mechanical calculations and the non-equilibrium Green's function method for transport calculations, we investigate the potential of CdS, ZnS, CdZnS, and ZnCdS as tunnel barriers in magnetic tunnel junctions for spintronics. Based on the finding that the valence band edges of these semiconductors are dominated by p orbitals and the conduction band edges by s orbitals, we show that symmetry filtering of the Bloch states in magnetic tunnel junctions with Fe electrodes results in high tunneling magnetoresistances and high spin-polarized current (up to two orders of magnitude higher than in the case of the Fe/MgO/Fe magnetic tunnel junction).

View Article and Find Full Text PDF

Correction: The peak viscosity of decaying foam with natural drainage and coarsening.

Soft Matter

January 2025

Center for Integrative Petroleum Research (CIPR), College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.

Correction for 'The peak viscosity of decaying foam with natural drainage and coarsening' by Wei Yu and Jack H. Y. Lo, , 2024, , 4964-4971, https://doi.

View Article and Find Full Text PDF

Climate change is imposing multiple stressors on marine life, leading to a restructuring of ecological communities as species exhibit differential sensitivities to these stressors. With the ocean warming and wind patterns shifting, processes that drive thermal variations in coastal regions, such as marine heatwaves and upwelling events, can change in frequency, timing, duration, and severity. These changes in environmental parameters can physiologically impact organisms residing in these habitats.

View Article and Find Full Text PDF

κ/β-GaO Type-II Phase Heterojunction.

Adv Mater

January 2025

Advanced Semiconductor Laboratory, Electrical and Computer Engineering Program, Division of Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.

Ultrawide-bandgap gallium oxide (GaO) holds immense potential for crucial applications such as solar-blind photonics and high-power electronics. Although several GaO polymorphs, i.e.

View Article and Find Full Text PDF

Realizing field-free switching of perpendicular magnetization by spin-orbit torques is crucial for developing advanced magnetic memory and logic devices. However, existing methods often involve complex designs or hybrid approaches, which complicate fabrication and affect device stability and scalability. Here, we propose a novel approach using -polarized spin currents for deterministic switching of perpendicular magnetization through interfacial engineering.

View Article and Find Full Text PDF

The Arabian Peninsula (AP) has been reported to experience increasing drought in recent decades. With this background, this study evaluates best performing Climate Model Intercomparison Project 6 (CMIP6) Global Climate Models (GCMs) for historical (1985-2014) simulations and future drought projections across the AP until 2100, using the standardized precipitation index (SPI) and standardized precipitation-evapotranspiration index (SPEI). We assess uncertainties from model differences, scenarios, timescales, and methods.

View Article and Find Full Text PDF

Defining epitranscriptomic hallmarks at the host-parasite interface and their roles in virulence and disease progression in Theileria annulata-infected leukocytes.

Biomed J

January 2025

Pathogen Genomics Group, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia; International Institute for Zoonosis Control, GI-CoRE, Hokkaido University, Sapporo, Japan. Electronic address:

Article Synopsis
  • Theileria parasites lead to the transformation of bovine leukocytes, causing them to proliferate rapidly and evade cell death.
  • The study investigates mA RNA modifications in T. annulata-infected leukocytes, using sequencing and bioinformatics to analyze these methylation patterns.
  • Findings suggest that mA modifications correlate with leukocyte proliferation rates and may influence cell cycle dynamics, with HIF-1α identified as a potential regulator of these modifications, highlighting the importance of mRNA methylation in the interaction between the parasite and host cells.
View Article and Find Full Text PDF

Ultra-broadband photodetectors (UB-PDs) are essential in medical applications, public safety monitoring, and various other fields. However, developing UB-PDs covering multiple bands from ultraviolet to medium infrared remains a challenge due to material limitations. Here, a mixed-dimensional heterojunction composed of 2D WS/monodisperse hexagonal stacking (MHS) 3D PdTe particles on 3D Si is proposed, capable of detecting light from 365 to 9600 nm.

View Article and Find Full Text PDF

The chirality of magnons, exhibiting left- and right-handed polarizations analogous to the counterparts of spin-up and spin-down, has emerged as a promising paradigm for information processing. However, the potential of this paradigm is constrained by the controllable excitation and transmission of chiral magnons. Here, the magnon transmission is explored in the GdFeO/NiO/Pt structures.

View Article and Find Full Text PDF

Engineering Lattice Dislocations of TiO Support of PdZn-ZnO Dual-Site Catalysts to Boost CO Hydrogenation to Methanol.

Angew Chem Int Ed Engl

December 2024

Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P. R. China.

CO hydrogenation to methanol using green hydrogen derived from renewable resources provides a promising method for sustainable carbon cycle but suffers from high selectivity towards byproduct CO. Here, we develop an efficient PdZn-ZnO/TiO catalyst by engineering lattice dislocation structures of TiO support. We discover that this modification orders irregularly arranged atoms in TiO to stabilize crystal lattice, and consequently weakens electronic interactions with supported active phases.

View Article and Find Full Text PDF

Pressure regulated CO electrolysis on two-dimensional BiOSe.

Chem Commun (Camb)

January 2025

Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.

The electrochemical reduction of carbon dioxide (CORR) offers potential for sustainable production and greenhouse gas mitigation, particularly with renewable energy integration. However, its widespread application is hindered by expensive catalysts, low selectivity, and limited current density. This study addresses these challenges by developing a low-mass-loading two-dimensional (2D) BiOSe catalyst chemical vapor deposition (CVD).

View Article and Find Full Text PDF

Nanobody-Based Lateral Flow Immunoassay for Rapid Antigen Detection of SARS-CoV-2 and MERS-CoV Proteins.

ACS Synth Biol

January 2025

KAUST Catalysis Center (KCC), Division of Physical Sciences & Engineering, King Abdullah University of Science and Technology, KAUST, Thuwal 23955, Kingdom of Saudi Arabia.

The COVID-19 pandemic has highlighted the critical need for pathogen detection methods that offer both low detection limits and rapid results. Despite advancements in simplifying and enhancing nucleic acid amplification techniques, immunochemical methods remain the preferred methods for mass testing. These methods eliminate the need for specialized laboratories and highly skilled personnel, making home testing feasible.

View Article and Find Full Text PDF

The Genetics of Neurodevelopmental Disorders Lab in Padua provided a new intellectual disability (ID) Panel challenge for computational methods to predict patient phenotypes and their causal variants in the context of the Critical Assessment of the Genome Interpretation, 6th edition (CAGI6). Eight research teams submitted a total of 30 models to predict phenotypes based on the sequences of 74 genes (VCF format) in 415 pediatric patients affected by Neurodevelopmental Disorders (NDDs). NDDs are clinically and genetically heterogeneous conditions, with onset in infant age.

View Article and Find Full Text PDF

We propose and demonstrate a data-driven plasmonic metascreen that efficiently absorbs incident light over a wide spectral range in an ultra-thin silicon film. By embedding a double-nanoring silver array within a 20 nm ultrathin amorphous silicon (a-Si) layer, we achieve a significant enhancement of light absorption. This enhancement arises from the interaction between the resonant cavity modes and localized plasmonic modes, requiring precise tuning of plasmon resonances to match the absorption region of the silicon active layer.

View Article and Find Full Text PDF

Benchmarking cross-species single-cell RNA-seq data integration methods: towards a cell type tree of life.

Nucleic Acids Res

January 2025

BioEngineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.

Cross-species single-cell RNA-seq data hold immense potential for unraveling cell type evolution and transferring knowledge between well-explored and less-studied species. However, challenges arise from interspecific genetic variation, batch effects stemming from experimental discrepancies and inherent individual biological differences. Here, we benchmarked nine data-integration methods across 20 species, encompassing 4.

View Article and Find Full Text PDF

Organic semiconducting polymers play a pivotal role in the development of field-effect transistors (OFETs) and organic light-emitting diodes (OLEDs), owing to their cost-effectiveness, structural versatility, and solution processability. However, achieving polymers with both high charge carrier mobility (μ) and photoluminescence (PL) quantum yield (Φ) remains a challenge. In this work, we present the design and synthesis of a novel donor-acceptor π-conjugated polymer, TTIF-BT, featuring a di-Thioeno[3,2-b] ThioenoIndeno[1,2-b] Fluorene (TTIF) backbone as the donor component.

View Article and Find Full Text PDF

Although the Rare Earth (RE)FeB type magnets were invented in the 1980s and are widely used worldwide. Yet, the phase formation and dissolution mechanisms are still not crystal clear. The reaction dynamics between rare earth elements (REE) and the iron-enriched matrix are essential to understanding the formation of hard magnetic REE-Fe-B phase or, conversely, phase dissociation and performance degeneration.

View Article and Find Full Text PDF

Increased Mineral-Associated Organic Carbon and Persistent Molecules in Allochthonous Blue Carbon Ecosystems.

Glob Chang Biol

January 2025

CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, China.

Coastal wetlands contain very large carbon (C) stocks-termed as blue C-and their management has emerged as a promising nature-based solution for climate adaptation and mitigation. The interactions among sources, pools, and molecular compositions of soil organic C (SOC) within blue C ecosystems (BCEs) remain elusive. Here, we explore these interactions along an 18,000 km long coastal line of salt marshes, mangroves, and seagrasses in China.

View Article and Find Full Text PDF