367 results match your criteria: "Kennedy Center for Research on Human Development[Affiliation]"

Experience-dependent serotonergic signaling in glia regulates targeted synapse elimination.

PLoS Biol

October 2024

Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, Tennessee, United States of America.

Article Synopsis
  • Brain connectivity optimization through synapse elimination occurs during critical periods influenced by sensory experiences.
  • Serotonin signaling in glial cells is crucial for this synaptic pruning, especially related to olfactory experiences in Drosophila.
  • The study shows that serotonin production and 5-HT2A receptors in glia (not neurons) are necessary for targeted pruning, and reactivating these receptors in adult glia can mimic experience-dependent pruning in maturity.
View Article and Find Full Text PDF

Sleep disorders are very common across neurodevelopmental disorders and place a large burden on affected children, adolescents, and their families. Sleep disturbances seem to involve a complex interplay of genetic, neurobiological, and medical/environmental factors in neurodevelopmental disorders. In this review, we discuss animal models of sleep problems and characterize their presence in two single gene disorders, Rett Syndrome, and Angelman Syndrome and two more commonly occurring neurodevelopmental disorders, Down Syndrome, and autism spectrum disorders.

View Article and Find Full Text PDF

Corrigendum: Dysregulation of BMP, Wnt, and insulin signaling in fragile X syndrome.

Front Cell Dev Biol

June 2024

Department of Biological Sciences, College of Arts and Science, Vanderbilt University, Nashville, TN, United States.

[This corrects the article DOI: 10.3389/fcell.2022.

View Article and Find Full Text PDF

Cofilin, an actin-severing protein, plays key roles in muscle sarcomere addition and maintenance. Our previous work found that Drosophila cofilin (DmCFL) knockdown in muscle causes progressive deterioration of muscle structure and function and produces features seen in nemaline myopathy caused by cofilin mutations. We hypothesized that disruption of actin cytoskeleton dynamics by DmCFL knockdown would impact other aspects of muscle development, and, thus, conducted an RNA-sequencing analysis that unexpectedly revealed upregulated expression of numerous neuromuscular junction (NMJ) genes.

View Article and Find Full Text PDF

A recent study discovered a novel, complex developmental disability syndrome, most likely caused by maternal fentanyl use disorder. This Fetal Fentanyl Syndrome (FFS) is biochemically characterized by elevated 7-dehydrocholesterol (7-DHC) levels in neonates, raising the question if fentanyl inhibition of the dehydrocholesterol reductase 7 (DHCR7) enzyme is causal for the emergence of the pathophysiology and phenotypic features of FFS. To test this hypothesis, we undertook a series of experiments on Neuro2a cells, primary mouse neuronal and astrocytic cultures, and human dermal fibroblasts (HDFs) with DHCR7 and DHCR7 genotype.

View Article and Find Full Text PDF

Critical periods are temporally-restricted, early-life windows when sensory experience remodels synaptic connectivity to optimize environmental input. In the Drosophila juvenile brain, critical period experience drives synapse elimination, which is transiently reversible. Within olfactory sensory neuron (OSN) classes synapsing onto single projection neurons extending to brain learning/memory centers, we find glia mediate experience-dependent pruning of OSN synaptic glomeruli downstream of critical period odorant exposure.

View Article and Find Full Text PDF

Day length, or photoperiod, is a reliable environmental cue encoded by the brain's circadian clock that indicates changing seasons and induces seasonal biological processes. In humans, photoperiod, age, and sex have been linked to seasonality in neuropsychiatric disorders, as seen in Seasonal Affective Disorder, Major Depressive Disorder, and Bipolar Disorder. The nucleus accumbens is a key locus for the regulation of motivated behaviors and neuropsychiatric disorders.

View Article and Find Full Text PDF

Experience-Dependent Remodeling of Juvenile Brain Olfactory Sensory Neuron Synaptic Connectivity in an Early-Life Critical Period.

J Vis Exp

March 2024

Department of Biological Sciences, Vanderbilt University and Medical Center; Department of Cell and Developmental Biology, Vanderbilt University and Medical Center; Department of Pharmacology, Vanderbilt University and Medical Center; Kennedy Center for Research on Human Development, Vanderbilt University and Medical Center; Vanderbilt Brain Institute, Vanderbilt University and Medical Center;

Early-life olfactory sensory experience induces dramatic synaptic glomeruli remodeling in the Drosophila juvenile brain, which is experientially dose-dependent, temporally restricted, and transiently reversible only in a short, well-defined critical period. The directionality of brain circuit synaptic connectivity remodeling is determined by the specific odorant acting on the respondent receptor class of olfactory sensory neurons. In general, each neuron class expresses only a single odorant receptor and innervates a single olfactory synaptic glomerulus.

View Article and Find Full Text PDF

Cofilin, an actin severing protein, plays critical roles in muscle sarcomere addition and maintenance. Our previous work has shown cofilin () knockdown causes progressive deterioration of muscle structure and function and produces features seen in nemaline myopathy (NM) caused by cofilin mutations. We hypothesized that disruption of actin cytoskeleton dynamics by knockdown would impact other aspects of muscle development, and, thus, conducted an RNA sequencing analysis which unexpectedly revealed upregulated expression of numerous neuromuscular junction (NMJ) genes.

View Article and Find Full Text PDF

The lipid storage disease Niemann Pick type C (NPC) causes neurodegeneration owing primarily to loss of NPC1. Here, we employed a Drosophila model to test links between glycosphingolipids, neurotransmission and neurodegeneration. We found that Npc1a nulls had elevated neurotransmission at the glutamatergic neuromuscular junction (NMJ), which was phenocopied in brainiac (brn) mutants, impairing mannosyl glucosylceramide (MacCer) glycosylation.

View Article and Find Full Text PDF

Clustering of L-type voltage-gated Ca channels (LTCCs) in the plasma membrane is increasingly implicated in creating highly localized Ca signaling nanodomains. For example, neuronal LTCC activation can increase phosphorylation of the nuclear CREB transcription factor by increasing Ca concentrations within a nanodomain close to the channel, without requiring bulk Ca increases in the cytosol or nucleus. However, the molecular basis for LTCC clustering is poorly understood.

View Article and Find Full Text PDF

In the developmental remodeling of brain circuits, neurons are removed by glial phagocytosis to optimize adult behavior. Fragile X mental retardation protein (FMRP) regulates neuron-to-glia signaling to drive glial phagocytosis for targeted neuron pruning. We find that FMRP acts in a mothers against decapentaplegic (Mad)-insulin receptor (InR)-protein kinase B (Akt) pathway to regulate pretaporter (Prtp) and amyloid precursor protein-like (APPL) signals directing this glial clearance.

View Article and Find Full Text PDF

Angelman syndrome (AS) is known to affect expressive and receptive communication abilities. This study examined individual differences in neural mechanisms underlying speech processing in children with AS (n = 24, M age = 10.01 years) and typical development (n = 30, M age = 10.

View Article and Find Full Text PDF

Dysregulation of BMP, Wnt, and Insulin Signaling in Fragile X Syndrome.

Front Cell Dev Biol

July 2022

Department of Biological Sciences, College of Arts and Science, Vanderbilt University, Nashville, TN, United States.

models of neurological disease contribute tremendously to research progress due to the high conservation of human disease genes, the powerful and sophisticated genetic toolkit, and the rapid generation time. Fragile X syndrome (FXS) is the most prevalent heritable cause of intellectual disability and autism spectrum disorders, and the FXS disease model has been critical for the genetic screening discovery of new intercellular secretion mechanisms. Here, we focus on the roles of three major signaling pathways: BMP, Wnt, and insulin-like peptides.

View Article and Find Full Text PDF

Prader-Willi syndrome (PWS) is a complex genetic disorder with three genetic classes. Patients with PWS are characterized by severe hypotonia, developmental delay, behavioral problems, learning disabilities and morbid obesity in early childhood if untreated. Data were collected through Rare Disease Clinical Research Network (RDCRN) from four study centers which evaluated patients with PWS.

View Article and Find Full Text PDF

Both mRNA-binding Fragile X mental retardation protein (FMRP; Fmr1) and mRNA-binding Staufen regulate synaptic bouton formation and glutamate receptor (GluR) levels at the Drosophila neuromuscular junction (NMJ) glutamatergic synapse. Here, we tested whether these RNA-binding proteins act jointly in a common mechanism. We found that both dfmr1 and staufen mutants, and trans-heterozygous double mutants, displayed increased synaptic bouton formation and GluRIIA accumulation.

View Article and Find Full Text PDF

Background: Negative emotional states are associated with the initiation and maintenance of alcohol use and drive relapse to drinking during withdrawal and protracted abstinence. Physical exercise is correlated with decreased negative affective symptoms, although a direct relationship between drinking patterns and exercise level has not been fully elucidated.

Methods: We incorporated intermittent running wheel access into a chronic continuous access, two-bottle choice alcohol drinking model in female C57BL/6J mice.

View Article and Find Full Text PDF

Prader-Willi syndrome (PWS) is a rare neurodevelopmental genetic disorder associated with a characteristic behavioral phenotype that includes severe hyperphagia and a variety of other behavioral challenges such as temper outbursts and anxiety. These behaviors have a significant and dramatic impact on the daily functioning and quality of life for the person with PWS and their families. To date, effective therapies addressing these behavioral challenges have proven elusive, but several potential treatments are on the horizon.

View Article and Find Full Text PDF

Active responses to stressors involve motor planning, execution, and feedback. Here we identify an insular cortex to BNST (insula) circuit recruited during restraint stress-induced active struggling that modulates affective behavior. We demonstrate that activity in this circuit tightly follows struggling behavioral events and that the size of the fluorescent sensor transient reports the duration of the struggle event, an effect that fades with repeated exposure to the homotypic stressor.

View Article and Find Full Text PDF

Hyperphagia and the associated interest in food is a characteristic feature of Prader-Willi syndrome (PWS) that emerges during childhood and remains a life-long concern. This study examined neural responses reflecting food cue salience in children with PWS and typical controls, age 3-12 years. Visual event-related potentials were recorded while participants in satiated state passively viewed photographs of high- and low-calorie foods, animals, and neutral objects.

View Article and Find Full Text PDF

The synaptic cleft manifests enriched glycosylation, with structured glycans coordinating signaling between presynaptic and postsynaptic cells. Glycosylated signaling ligands orchestrating communication are tightly regulated by secreted glycan-binding lectins. Using the Drosophila neuromuscular junction (NMJ) as a model glutamatergic synapse, we identify a new Ca2+-binding (C-type) lectin, Lectin-galC1 (LGC1), which modulates presynaptic function and neurotransmission strength.

View Article and Find Full Text PDF

Prader-Willi syndrome (PWS) is a complex genetic disorder with three molecular classes but clinical ascertainment is based on distinctive features. The prevalence of dysmorphic features was studied in 355 PWS participants (61% deletion, 36% maternal disomy [UPD], and 3% imprinting defects) from the National Institute of Health PWS Rare Diseases Clinical Research Network. The effect of growth hormone (GH) treatment on growth and dysmorphic features was compared.

View Article and Find Full Text PDF

Glia engulf and phagocytose neurons during neural circuit developmental remodeling. Disrupting this pruning process contributes to Fragile X syndrome (FXS), a leading cause of intellectual disability and autism spectrum disorder in mammals. Utilizing a Drosophila FXS model central brain circuit, we identify two glial classes responsible for Draper-dependent elimination of developmentally transient PDF-Tri neurons.

View Article and Find Full Text PDF

Prescription Medications Alter Neuronal and Glial Cholesterol Synthesis.

ACS Chem Neurosci

February 2021

Department of Chemistry, Vanderbilt Institute of Chemical Biology and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee 37235, United States.

Article Synopsis
  • The study investigates how certain prescription medications affect cholesterol production in mouse brains, particularly in neurons and astrocytes, which are crucial for brain function.
  • Researchers exposed these cells to six different drugs that can cross the blood-brain barrier and analyzed the impact on cholesterol synthesis using advanced chemical techniques.
  • The findings revealed that several medications altered enzyme activity related to cholesterol biosynthesis, leading to increased levels of sterol intermediates and decreased cholesterol, which mimicked conditions similar to a specific genetic disorder affecting brain development.
View Article and Find Full Text PDF

Trazodone effects on developing brain.

Transl Psychiatry

February 2021

Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, 68198, NE, USA.

Trazodone (TRZ) is a commonly prescribed antidepressant with significant off-label use for insomnia. A recent drug screening revealed that TRZ interferes with sterol biosynthesis, causing elevated levels of sterol precursor 7-dehydrocholesterol (7-DHC). Recognizing the well-documented, disruptive effect of 7-DHC on brain development, we designed a study to analyze TRZ effects during pregnancy.

View Article and Find Full Text PDF