180 results match your criteria: "Kawasaki Institute of Industrial Promotion[Affiliation]"
J Control Release
February 2021
Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; Institute for Future Initiatives, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. Electronic address:
Carriers for messenger RNA (mRNA) delivery require propensities to protect the mRNA from enzymatic degradation and to selectively release mRNA in the cytosol for smooth mRNA translation. To meet these requirements, we designed mRNA-loaded polyplex micelles (PMs) with ATP-responsive crosslinking in the inner core by complexing mRNA with poly(ethylene glycol)-polycation block copolymers derivatized with phenylboronic acid and polyol groups, which form crosslinking structures via spontaneous phenylboronate ester formation. PMs thus prepared are tolerable against enzymatic attack and, in turn, disintegrate in the cytosol to release mRNA when triggered by the cleavage of phenylboronate ester linkages in response to elevated ATP concentration.
View Article and Find Full Text PDFCancers (Basel)
December 2020
Department of Translational Oncology, National Cancer Center Research Institute, Tokyo 104-0045, Japan.
Epithelial-mesenchymal transition (EMT) plays an important role in the acquisition of cancer stem cell (CSC) feature and drug resistance, which are the main hallmarks of cancer malignancy. Although previous findings have shown that several signaling pathways are activated in cancer progression, the precise mechanism of signaling pathways in EMT and CSCs are not fully understood. In this study, we focused on the intestinal and diffuse-type gastric cancer (GC) and analyzed the gene expression of public RNAseq data to understand the molecular pathway regulation in different subtypes of gastric cancer.
View Article and Find Full Text PDFAcc Chem Res
December 2020
Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan.
Therapeutic manipulation of the immune system against cancer has revolutionized the treatment of several advanced-stage tumors. While many have benefited from these treatments, the proportion of patients responding to immunotherapies is still low. Nanomedicines have promise to revolutionize tumor treatments through spatiotemporal control of drug activity.
View Article and Find Full Text PDFBiomaterials
January 2021
Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 212-0821, Japan; Institute for Future Initiatives, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. Electronic address:
The crucial balance of stability in blood-circulation and tumor-specific delivery has been suggested as one of the challenges for effective bench-to-bedside translation of nanomedicines (NMs). Herein, we developed a supramolecularly enabled tumor-extracellular (T) pH-triggered NM that can maintain the micellar structure with the entrapped-drug during systemic circulation and progressively release drug in the tumor by rightly sensing heterogeneous tumor-pH. Desacetylvinblastine hydrazide (DAVBNH), a derivative of potent anticancer drug vinblastine, was conjugated to an aliphatic ketone-functionalized poly(ethylene glycol)-b-poly(amino acid) copolymer and the hydrolytic stability of the derived hydrazone bond was efficiently tailored by exploiting the compartmentalized structure of polymer micelle.
View Article and Find Full Text PDFJ Control Release
December 2020
Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan. Electronic address:
In photodynamic therapy (PDT), the inherent physicochemical properties of a photosensitizer (PS) critically affect its biodistribution and therapeutic outcome as well as side effect. Here, we developed a PS-polymer conjugate displaying isothermal hydrophilic-to-hydrophobic phase transition in response to tumorous acidic pH. The polymer backbone was poly(N-isopropylacrylamide (NIPAAm)/2-aminoisoprpylacrylamide (AIPAAm)) (P(NIPAAm/AIPAAm)), which shows lower critical solution temperature (LCST) of 30 °C.
View Article and Find Full Text PDFBiomacromolecules
October 2020
Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
For the simultaneous delivery of antisense oligonucleotides and their effector enzymes into cells, nanosized vesicular polyion complexes (PICs) were fabricated from oppositely charged polyion pairs of oligonucleotides and poly(ethylene glycol) (PEG)--polypeptides. First, the polyion component structures were carefully designed to facilitate a multimolecular (or secondary) association of unit PICs for noncovalent (or chemical cross-linking-free) stabilization of vesicular PICs. Chemically modified, single-stranded oligonucleotides (SSOs) dramatically stabilized the multimolecular associates under physiological conditions, compared to control SSOs without chemical modifications and duplex oligonucleotides.
View Article and Find Full Text PDFJ Control Release
January 2021
Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259, Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan. Electronic address:
The enhanced permeability and retention (EPR) effect is fundamental to tumor-targeted drug delivery using nanoparticles. However, recent studies reported heterogeneity of the EPR effect, and companion diagnostics are considered to be key to predicting and optimizing the benefits of the EPR effect. Here, as a new material to simply endow the function of companion diagnostics to nanoparticles, we designed a poly(ethylene glycol) (PEG) derivative conjugated with low molecular fluorescent dye through synthetic substrate linker that can be cleaved in response to MMP-2, which is overexpressed in tumor extracellular matrix.
View Article and Find Full Text PDFMol Pharm
October 2020
Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060 0812, Hokkaido, Japan.
The intravenous administration of drug-loaded nanoparticles (NPs) is needed to achieve passive or active targeting in disease tissues. However, when the loaded drug is a hydrophobic small molecule, the NPs fail to reach adequate plasma drug concentrations mainly because of premature drug release. The pharmacokinetics of such drugs can be controlled by covalent modification, but this approach could compromise the safety or potency of the drug.
View Article and Find Full Text PDFBiomaterials
December 2020
Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan. Electronic address:
RNA nanotechnology has promise for developing mRNA carriers with enhanced physicochemical and functional properties. However, the potential synergy for mRNA delivery of RNA nanotechnology in cooperation with established carrier systems remains unknown. This study proposes a combinational system of RNA nanotechnology and mRNA polyplexes, by focusing on mRNA steric structure inside the polyplexes.
View Article and Find Full Text PDFMol Pharm
October 2020
Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
Messenger RNA (mRNA) has immense potential for developing a wide range of therapies, including immunotherapy and protein replacement. As mRNA presents no risk of integration into the host genome and does not require nuclear entry for transfection, which allows protein production even in nondividing cells, mRNA-based approaches can be envisioned as safe and practical therapeutic strategies. Nevertheless, mRNA presents unfavorable characteristics, such as large size, immunogenicity, limited cellular uptake, and sensitivity to enzymatic degradation, which hinder its use as a therapeutic agent.
View Article and Find Full Text PDFACS Nano
August 2020
Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan.
Glioblastoma (GBM) is resistant to immune checkpoint inhibition due to its low mutation rate, phosphatase and tensin homologue (PTEN)-deficient immunosuppressive microenvironment, and high fraction of cancer stem-like cells (CSCs). Nanomedicines fostering immunoactivating intratumoral signals could reverse GBM resistance to immune checkpoint inhibitors (ICIs) for promoting curative responses. Here, we applied pH-sensitive epirubicin-loaded micellar nanomedicines, which are under clinical evaluation, to synergize the efficacy of anti-PD1antibodies (aPD1) against PTEN-positive and PTEN-negative orthotopic GBM, the latter with a large subpopulation of CSCs.
View Article and Find Full Text PDFACS Appl Bio Mater
August 2020
Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan.
Aberrant sialylation of cancer cells is emerging as an attractive method for generating effective antitumor strategies. However, as sialic acid (SA) is also present in healthy tissues, systems targeting SA in tumors must be strategically designed to be specifically activated in an intratumoral environment while avoiding systemic interaction. Phenylboronic acid (PBA) and its derivatives have shown potential for developing such smart ligands based on its triggered binding to SA at intratumoral pH.
View Article and Find Full Text PDFBiomacromolecules
September 2020
Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan.
Tannic acid (TA) can form stable complexes with proteins, attracting significant attention as protein delivery systems. However, its systemic application has been limited due to nonspecific interaction. Here, we report a simple technique to prepare systemically applicable protein delivery systems using sequential self-assembly of a protein, TA, and phenylboronic acid-conjugated PEG-poly(amino acid) block copolymers in aqueous solution.
View Article and Find Full Text PDFCancer Sci
January 2021
Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
Cancer cells have high iron requirements due to their rapid growth and proliferation. Iron depletion using iron chelators has a potential in cancer treatment. Previous studies have demonstrated that deferoxamine (DFO) specifically chelates Fe(III) and exhibited antitumor activity in clinical studies.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2020
Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 210-0821 Kawasaki, Japan;
Current strategies to direct therapy-loaded nanoparticles to the brain rely on functionalizing nanoparticles with ligands which bind target proteins associated with the blood-brain barrier (BBB). However, such strategies have significant brain-specificity limitations, as target proteins are not exclusively expressed at the brain microvasculature. Therefore, novel strategies which exploit alternative characteristics of the BBB are required to overcome nonspecific nanoparticle targeting to the periphery, thereby increasing drug efficacy and reducing detrimental peripheral side effects.
View Article and Find Full Text PDFSci Adv
June 2020
Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan.
A major critical issue in systemically administered nanomedicines is nonspecific clearance by the liver sinusoidal endothelium, causing a substantial decrease in the delivery efficiency of nanomedicines into the target tissues. Here, we addressed this issue by in situ stealth coating of liver sinusoids using linear or two-armed poly(ethylene glycol) (PEG)-conjugated oligo(l-lysine) (OligoLys). PEG-OligoLys selectively attached to liver sinusoids for PEG coating, leaving the endothelium of other tissues uncoated and, thus, accessible to the nanomedicines.
View Article and Find Full Text PDFNat Biomed Eng
July 2020
Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Japan.
Front Pharmacol
June 2020
Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research (CBSR), National Institute of Health Science (NIHS), Kawasaki, Japan.
The mechanism of epithelial-mesenchymal transition (EMT) consists of the cellular phenotypic transition from epithelial to mesenchymal status. The cells exhibiting EMT exist in cancer stem cell (CSC) population, which is involved in drug resistance. CSCs demonstrating EMT feature remain after cancer treatment, which leads to drug resistance, recurrence, metastasis and malignancy of cancer.
View Article and Find Full Text PDFNanomedicine (Lond)
July 2020
Department of Basic Sciences, Faculty of Medicine & Health Sciences, Universitat Internacional de Catalunya, 08195, Sant Cugat del Vallès, Spain.
Medical treatments of neuron-related disorders are limited due to the difficulty of targeting brain cells. Major drawbacks are the presence of the blood-brain barrier and the lack of specificity of the drugs for the diseased cells. Nanomedicine-based approaches provide promising opportunities for overcoming these limitations.
View Article and Find Full Text PDFCancer Sci
July 2020
Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan.
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer compared with luminal or epidermal growth factor receptor 2 subtypes, thus effective therapeutic options for TNBC are yet to be developed. Nowadays, oncogenic long noncoding RNAs (lncRNAs) are applied to cancer management as a new class of therapeutic targets. We previously showed that thymopoietin antisense transcript 1 (TMPO-AS1) is a proliferation-associated lncRNA that contributes to hormone-dependent breast cancer progression by stabilizing estrogen receptor-α mRNA.
View Article and Find Full Text PDFACS Nano
June 2020
Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan.
Delivering therapeutic antibodies into the brain across the blood-brain barrier at a therapeutic level is a promising while challenging approach in the treatment of neurological disorders. Here, we present a polymeric nanomicelle (PM) system capable of delivering therapeutically effective levels of 3D6 antibody fragments (3D6-Fab) into the brain parenchyma for inhibiting Aβ aggregation. PM assembly was achieved by charge-converting 3D6-Fab through pH-sensitive citraconylation to allow complexation with reductive-sensitive cationic polymers.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
August 2020
Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan.
Synthetic polymer vesicles spur novel strategies for producing intelligent nanodevices with precise and specific functions. Engineering vesicular nanodevices with tunable permeability by a general platform without involving trade-offs between structural integrity, flexibility, and functionality remains challenging. Herein, we present a general strategy to construct responsive nanoreactors based on polyion complex vesicles by integrating stimuli-responsive linkers into a crosslinking membrane network.
View Article and Find Full Text PDFMicromachines (Basel)
April 2020
Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan.
A combination of three-dimensional (3D) cell culturing and non-viral gene transfection is promising in improving outcomes of cell transplantation therapy. Herein, gene transfection profiles in 3D cell culture were compared between plasmid DNA (pDNA) and messenger RNA (mRNA) introduction, using mesenchymal stem cell (MSC) 3D spheroids. Green fluorescence protein (GFP) mRNA induced GFP protein expression in 77% of the cells in the spheroids, whereas only 34% of the cells became GFP positive following pDNA introduction.
View Article and Find Full Text PDFMol Pharm
June 2020
Functional Polymer Materials, Chair for Advanced Materials Synthesis, Department of Chemistry and Pharmacy and Bavarian Polymer Institute, University of Würzburg, Röntgenring 11, 97070 Würzburg, Germany.
Inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase of the family of statins have been suggested as therapeutic options in various tumors. Atorvastatin is a statin with the potential to cross the blood-brain barrier; however, the concentrations necessary for a cytotoxic effect against cancer cells exceed the concentrations achievable via oral administration, which made the development of a novel atorvastatin formulation necessary. We characterized the drug loading and basic physicochemical characteristics of micellar atorvastatin formulations and tested their cytotoxicity against a panel of different glioblastoma cell lines.
View Article and Find Full Text PDFSci Adv
April 2020
Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
Although growth factors have great therapeutic potential because of their regenerative functions, they often have intrinsic drawbacks, such as low thermal stability and high production cost. Oligonucleotides have recently emerged as promising chemical entities for designing synthetic alternatives to growth factors. However, their applications in vivo have been recognized as a challenge because of their susceptibility to nucleases and limited distribution to a target tissue.
View Article and Find Full Text PDF