3 results match your criteria: "Karolinska Institutet 17177 Stockholm[Affiliation]"

TET1 regulates gene expression and repression of endogenous retroviruses independent of DNA demethylation.

Nucleic Acids Res

August 2022

Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich 81377, Germany.

DNA methylation (5-methylcytosine (5mC)) is critical for genome stability and transcriptional regulation in mammals. The discovery that ten-eleven translocation (TET) proteins catalyze the oxidation of 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) revolutionized our perspective on the complexity and regulation of DNA modifications. However, to what extent the regulatory functions of TET1 can be attributed to its catalytic activity remains unclear.

View Article and Find Full Text PDF

Determining the valence of an odor to guide rapid approach-avoidance behavior is thought to be one of the core tasks of the olfactory system, and yet little is known of the initial neural mechanisms supporting this process or of its subsequent behavioral manifestation in humans. In two experiments, we measured the functional processing of odor valence perception in the human olfactory bulb (OB)-the first processing stage of the olfactory system-using a noninvasive method as well as assessed the subsequent motor avoidance response. We demonstrate that odor valence perception is associated with both gamma and beta activity in the human OB.

View Article and Find Full Text PDF

Motivation: In microarray data studies most researchers are keenly aware of the potentially high rate of false positives and the need to control it. One key statistical shift is the move away from the well-known P-value to false discovery rate (FDR). Less discussion perhaps has been spent on the sensitivity or the associated false negative rate (FNR).

View Article and Find Full Text PDF