6,186 results match your criteria: "Karlsruhe Institute of Technology KIT; 76344 Eggenstein-Leopoldshafen[Affiliation]"

Efforts to harness quantum hardware relying on quantum mechanical principles have been steadily progressing. The search for novel material platforms that could spur the progress by providing new functionalities for solving the outstanding technological problems is however still active. Any physical property presenting two distinct energy states that can be found in a long-lived superposition state can serve as a quantum bit (qubit), the basic information processing unit in quantum technologies.

View Article and Find Full Text PDF

From data to insights: Upscaling riverine GHG fluxes in Germany with machine learning.

Sci Total Environ

January 2025

Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Kreuzeckbahnstrasse 19, Garmisch-Partenkirchen 82467, Germany.

Global fluvial ecosystems are important sources of greenhouse gases (CO, CH and NO) to the atmosphere, but their estimates are plagued by uncertainties due to unaccounted spatio-temporal variabilities in the fluxes. In this study, we tested the potential of modeling these variabilities using several machine learning models (ML) and three different input datasets (remotely sensed vegetation indices, in-situ water quality, and a combination of both) from 20 headwater catchments in Germany that differ in catchment land use and stream size. We also upscaled fluvial GHG fluxes for Germany using the best ML model and explored the role of catchment land use on the GHG spatial-temporal trends.

View Article and Find Full Text PDF

Efficiency and process development for microbial biomass production using oxic bioelectrosynthesis.

Trends Biotechnol

December 2024

Institute of Technical Microbiology, Hamburg University of Technology (TUHH), Kasernenstraße 12 (F), 21073 Hamburg, Germany. Electronic address:

Autotrophic microbial electrosynthesis (MES) processes are mainly based on organisms that rely on carbon dioxide (CO) as an electron acceptor and typically have low biomass yields. However, there are few data on the process and efficiencies of oxic MES (OMES). In this study, we used the knallgas bacterium Kyrpidia spormannii to investigate biomass formation and energy efficiency of cathode-dependent growth.

View Article and Find Full Text PDF

Ion mobility spectrometry (IMS) (also including IMS-IMS measurements) as well as DFT calculations have been used to study isomer distributions and isomer interconversion in a range of electrospray-generated lanthanide chloride cluster anions, LnCl (where = 1-6, and Ln corresponds to the 15 lanthanide elements (except for radioactive Pm)). Where measurement and structural rearrangement timescales allow, we obtain almost quantitative agreement between experiment and theory thus confirming isomer predictions and reproducing isomer intensity ratios. LnCl structures reflect strong ionic bonding with limited directionality.

View Article and Find Full Text PDF
Article Synopsis
  • This study focuses on creating a new nanocomposite (GO-PAA-Cu-LP) for medical uses through a multi-step synthesis involving graphene oxide and polyacrylic acid.
  • The research includes a variety of characterization techniques to analyze the nanocomposite, demonstrating that it retains about 73% of its reactivity even after 9 weeks of storage at low temperatures.
  • The findings show that the modified GO-PAA-Cu-LP has enhanced selectivity against cancer cells, promoting apoptosis and cell cycle arrest compared to standard composites and lactoperoxidase alone.
View Article and Find Full Text PDF

Biocatalytic degradation of micropollutants has been extensively explored in both batch and membrane reactors in µg/L to mg/L concentrations and variable water compositions. The degradation of micropollutants by biocatalytic membranes at environmentally relevant concentrations of ng/L range found in natural surface water matrices has not yet been investigated, presumably because of the challenging concentration analysis. This study investigated the limitations of biocatalytic degradation of estradiol (E2) micropollutant at environmentally relevant concentrations by a biocatalytic membrane.

View Article and Find Full Text PDF

Since the seminal report by Adachi and co-workers in 2012, there has been a veritable explosion of interest in the design of thermally activated delayed fluorescence (TADF) compounds, particularly as emitters for organic light-emitting diodes (OLEDs). With rapid advancements and innovation in materials design, the efficiencies of TADF OLEDs for each of the primary color points as well as for white devices now rival those of state-of-the-art phosphorescent emitters. Beyond electroluminescent devices, TADF compounds have also found increasing utility and applications in numerous related fields, from photocatalysis, to sensing, to imaging and beyond.

View Article and Find Full Text PDF

The inverse design of tailored organic molecules for specific optoelectronic devices of high complexity holds an enormous potential but has not yet been realized. Current models rely on large data sets that generally do not exist for specialized research fields. We demonstrate a closed-loop workflow that combines high-throughput synthesis of organic semiconductors to create large datasets and Bayesian optimization to discover new hole-transporting materials with tailored properties for solar cell applications.

View Article and Find Full Text PDF

As a nascent class of high-entropy materials (HEMs), high-entropy metal-organic frameworks (HE-MOFs) have garnered significant attention in the fields of catalysis and renewable energy technology owing to their intriguing features, including abundant active sites, stable framework structure, and adjustable chemical properties. This review offers a comprehensive summary of the latest developments in HE-MOFs, focusing on functional design, synthesis strategies, and practical applications. This work begins by presenting the design principles for the synthesis strategies of HE-MOFs, along with a detailed description of commonly employed methods based on existing reports.

View Article and Find Full Text PDF

Femtosecond Spin-State Switching Dynamics of Fe(II) Complexes Condensed in Thin Films.

ACS Nano

December 2024

Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg 47057, Germany.

The tailoring of spin-crossover films has made significant progress over the past decade, mostly motivated by the prospect in technological applications. In contrast to spin-crossover complexes in solution, the investigation of the ultrafast switching in spin-crossover films has remained scarce. Combining the progress in molecule synthesis and film growth with the opportunities at X-ray free-electron lasers, we study the photoinduced spin-state switching dynamics of a molecular film at room temperature.

View Article and Find Full Text PDF

Extreme precipitation events are projected to intensify with global warming, threatening ecosystems and amplifying flood risks. However, observation-based estimates of extreme precipitation-temperature (EP-T) sensitivities show systematic spatio-temporal variability, with predominantly negative sensitivities across warmer regions. Here, we attribute this variability to confounding cloud radiative effects, which cool surfaces during rainfall, introducing covariation between rainfall and temperature beyond temperature's effect on atmospheric moisture-holding capacity.

View Article and Find Full Text PDF

A sustainable, general and scalable electrochemical protocol for direct access to 3-(acylamidoalkyl)-2,1-benzisoxazoles by cathodic reduction of widely accessible nitro arenes is established. The method is characterised by a simple undivided set-up under constant current conditions, inexpensive and reusable carbon-based electrodes, and environmentally benign reaction conditions. The versatility of the developed protocol is demonstrated on 39 highly diverse examples with up to 81% yield.

View Article and Find Full Text PDF

Trp residues near peptide termini enhance the membranolytic activity of cationic amphipathic α-helices.

Biophys Chem

December 2024

Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), POB 3640, 76021 Karlsruhe, Germany; KIT, Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany. Electronic address:

KIA peptides were designed as a series of cationic antimicrobial agents of different lengths, based on the repetitive motif [KIAGKIA]. As amphiphilic helices, they tend to bind initially to the surface of lipid membranes. Depending on the conditions, they are proposed to flip, insert and form toroidal pores, such that the peptides are aligned in a transmembrane orientation.

View Article and Find Full Text PDF

Simulation models and artificial intelligence (AI) are largely used to address healthcare and biomedical engineering problems. Both approaches showed promising results in the analysis and optimization of healthcare processes. Therefore, the combination of simulation models and AI could provide a strategy to further boost the quality of health services.

View Article and Find Full Text PDF

Acetate Shock Loads Enhance CO Uptake Rates of Anaerobic Microbiomes.

Microb Biotechnol

December 2024

Institute of Process Engineering in Life Sciences 2: Electro Biotechnology, Karlsruhe Institute of Technology - KIT, Karlsruhe, Germany.

Pyrolysis of lignocellulosic biomass commonly produces syngas, a mixture of gases such as CO, CO and H, as well as an aqueous solution generally rich in organic acids such as acetate. In this study, we evaluated the impact of increasing acetate shock loads during syngas co-fermentation with anaerobic microbiomes at different pH levels (6.7 and 5.

View Article and Find Full Text PDF

The projected sensitivity of the effective electron neutrino-mass measurement with the KATRIN experiment is below 0.3 eV (90 % CL) after 5 years of data acquisition. The sensitivity is affected by the increased rate of the background electrons from KATRIN's main spectrometer.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the magnetic properties of the "cartwheel" heptanuclear cluster [FeO(OCBu)(Me-dea)(HO)], utilizing Mössbauer spectroscopy and sub-Kelvin magnetization measurements to provide insights into its spin frustration.
  • The Fe Mössbauer spectra at temperatures above 150 K revealed a specific ratio of doublets that corresponded to different iron sites within the cluster, confirming a previously proposed spin ground state structure where spins are aligned differently among the central and peripheral sites.
  • At sub-Kelvin temperatures, the behavior of the cluster changed, showing spin blocking and single-molecule magnet characteristics, along with a defined anisotropy barrier that allows for quantum tunneling at low temperatures.
View Article and Find Full Text PDF

A Stable Carbon-Centered Radical Showing Six Amphoteric Redox States.

Chemistry

January 2025

Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany.

An air- and moisture-stable hydrocarbon radical with four six- and three five-membered rings alternately fused to a heptacycle was obtained by ortho fusion in a suitably ortho,ortho'-substituted diphenylfluorene and subsequent re-establishment of the conjugation. The radical was obtained in five consecutive steps from commercially available starting materials with a total yield of 34 %; key steps are Suzuki couplings and cyclizing SAr reactions. Mesityl substituents at the five-membered rings ensure the stability of the radical.

View Article and Find Full Text PDF

A novel series of 1,2,3-triazole/quinazoline-4-one hybrids (8a-t) were designed and synthesized as dual-targeted antiproliferative agents. Compounds 8a-t were evaluated for their antiproliferative efficacy against a panel of four cancer cell lines. The results indicated that most of the evaluated compounds exhibited strong antiproliferative activity, with 8f, 8g, 8h, 8j, and 8l demonstrating the highest potency.

View Article and Find Full Text PDF

New particle formation (NPF) in the tropical upper troposphere is a globally important source of atmospheric aerosols. It is known to occur over the Amazon basin, but the nucleation mechanism and chemical precursors have yet to be identified. Here we present comprehensive in situ aircraft measurements showing that extremely low-volatile oxidation products of isoprene, particularly certain organonitrates, drive NPF in the Amazonian upper troposphere.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses advancements in light-driven 3D additive manufacturing, focusing on the photothermal laser-printing of sub-micrometer ZnO structures for microelectronics.
  • It highlights three key improvements: using single-crystalline ZnO for better structure, utilizing dimethyl sulfoxide (DMSO) to achieve higher temperatures, and employing specialized substrates for improved light to heat conversion.
  • The process is noted for its efficiency since it requires no post-processing and can be conducted without a cleanroom environment, simplifying the fabrication of crystalline semiconductors.
View Article and Find Full Text PDF

Polymer design requires fine control over syntheses and a thorough understanding of their macromolecular structure. Herein, near-atomic level imaging of polymers is achieved, enabling the precise determination of one of the most important macromolecular characteristics: molecular weight. By judiciously designing and synthesizing different linear metal(loid)-rich homopolymers, subnanoscale polymer imaging is achieved through annular dark field-scanning transmission electron microscopy (ADF-STEM), owing to the incorporation of high atoms in the side chain of the monomeric units.

View Article and Find Full Text PDF
Article Synopsis
  • The multisensor concept provides a fast and reliable way to assess gases and odors by mimicking biological detection systems through pattern recognition.
  • The study details the development of a sensor array using metal oxide nanostructures, specifically growing various oxides (Co, Ni, Mn, and Zn) on a chip to create chemiresistive films.
  • Results indicate that these nanostructures, particularly ZnO, enhance the sensor's performance, allowing detection of alcohol vapors at very low concentrations due to their high-sensitivity signals.
View Article and Find Full Text PDF

Recently, the focus in chromatography model development has expanded to include the modeling of extra column volume (ECV), particularly in small- and lab-scale systems where ECV can constitute a significant portion of the total volume. Typically, ECV is modeled with 1D approaches, for example with combinations of dispersed plug flow reactors (DPFRs) and continuously stirred tank reactors (CSTRs). However, radial inhomogeneities in the ECV concentration profile necessitate higher-dimensional models for more accurate predictions.

View Article and Find Full Text PDF