1,152 results match your criteria: "K.N.Toosi University of Technology[Affiliation]"

A discussion about the velocity distribution commonly used as the boundary condition in surface acoustic wave numerical simulations.

Biomed Microdevices

October 2023

Fuel Cells and Nano Systems (FCNS) Laboratory, Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.

Surface acoustic waves in combination with microfluidics has become an attractive research field regarding its various medical and biological applications. It is sometimes preferred to solve just the fluid domain and apply some boundary conditions to represent other components rather than performing a coupled numerical solution. To account for the piezoelectric actuation, a conventional velocity distribution built by superposing the left-going and right-going surface waves is commonly used as the boundary condition, its correctness is assessed here by comparing it to a coupled solution.

View Article and Find Full Text PDF

Since the beginning of the rapidly spreading COVID-19 pandemic, several mutations have occurred in the genetic sequence of the virus, resulting in emerging different variants of concern. These variants vary in transmissibility, severity of infections, and mortality rate. Designing models that are capable of predicting the future behavior of these variants in the societies can help decision makers and the healthcare system to design efficient health policies, and to be prepared with the sufficient medical devices and an adequate number of personnel to fight against this virus and the similar ones.

View Article and Find Full Text PDF

Background And Objective: This study considers dynamic modeling of the cerebral arterial circulation and reconstructing an atlas for the electrical conductivity of the brain. Electrical conductivity is a governing parameter in several electrophysiological modalities applied in neuroscience, such as electroencephalography (EEG), transcranial electrical stimulation (tES), and electrical impedance tomography (EIT). While high-resolution 7-Tesla (T) Magnetic Resonance Imaging (MRI) data allow for reconstructing the cerebral arteries with a cross-sectional diameter larger than the voxel size, electrical conductivity cannot be directly inferred from MRI data.

View Article and Find Full Text PDF

Mitral valve dynamics depend on force stability in the mitral leaflets, the mitral annulus, the chordae tendineae, and the papillary muscles. In chordal rupture conditions, the proper function of the valve disrupts, causing mitral regurgitation, the most prevalent valvular disease. In this study, Structural and FSI frameworks were employed to study valve dynamics in healthy, pathologic, and repaired states.

View Article and Find Full Text PDF

A comparative study between conventional chemotherapy and photothermal activated nano-sized targeted drug delivery to solid tumor.

Comput Biol Med

November 2023

Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada; Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, Canada; Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada; Centre for Sustainable Business, International Business University, Toronto, Canada. Electronic address:

Delivery of chemotherapeutic medicines to solid tumors is critical for optimal therapeutic success and minimal adverse effects. We mathematically developed a delivery method using thermosensitive nanocarriers activated by light irradiation. To assess its efficacy and identify critical events and parameters affecting therapeutic response, we compared this method to bolus and continuous infusions of doxorubicin for both single and multiple administrations.

View Article and Find Full Text PDF

Combination therapy has been considered one of the most promising approaches for improving the therapeutic effects of anticancer drugs. This is the first study that uses two different antioxidants in full-characterized niosomal formulation and thoroughly evaluates their synergistic effects on breast cancer cells. In this study, in-silico studies of hydrophilic and hydrophobic drugs (ascorbic acid: Asc and curcumin: Cur) interactions and release were investigated and validated by a set of in vitro experiments to reveal the significant improvement in breast cancer therapy using a co-delivery approach by niosomal nanocarrier.

View Article and Find Full Text PDF

Trimetallic CuO/Ag/NiO supported with silica nanoparticles based composite materials for green hydrogen production.

Sci Rep

October 2023

Faculty of Mechanical Engineering-Energy Division, K.N. Toosi University of Technology, No. 15-19, Pardis St., Mollasadra Ave., Vanak Sq., P.O. Box: 19395-1999, Tehran, 1999 143344, Iran.

Production and utilization of grey and blue hydrogen is responsible for emission of millions of tons of carbon dioxide (CO) across the globe. This increased emission of CO has severe repercussions on the planet earth and in particular on climate change. Here in, we explored advance bimetallic (BM) CuO/Ag and trimetallic (TM) CuO/Ag/NiO based nanoporous materials supported with silica nanoparticles (SiNPs) via sol-gel route.

View Article and Find Full Text PDF

Formation and the basic features of arbitrary amplitude ion-acoustic solitary waves (IASWs) in a plasma consisting of warm positive ions, two [Formula: see text]-distributed electrons and an electron beam are investigated by using the Sagdeev pseudopotential approach. It is shown that the soliton existence domain (Mach number limits) sensitively depends on temperature of ions, spectral index of cool electrons and concentration of hot electron species while spectral index of hot electrons, hot-to-cool electron temperature ratio and also concentration of electron beam do not considerably affect this domain. It is also found that temperature of electron beam only affect the existence domain of rarefactive solitons.

View Article and Find Full Text PDF

Angiography is a very informative method for physicians such as cardiologists, neurologists and neuroscientists. The current modalities experience some shortages, e.g.

View Article and Find Full Text PDF

Neutron spectroscopy with TENIS using an artificial neural network.

Appl Radiat Isot

November 2023

School of Nuclear Science and Engineering, Tomsk Polytechnic University, P.O. Box 634050, Tomsk, Russian Federation.

In this research, a ThErmal Neutron Imaging System (TENIS) consisting of two perpendicular sets of plastic scintillator arrays for boron neutron capture therapy (BNCT) application has been investigated in a completely different approach for neutron energy spectrum unfolding. TENIS provides a thermal neutron map based on the detection of 2.22 MeV gamma-rays resulting from H(n, γ)D reactions, but in the present study, the 70-pixel thermal neutron images have been used as input data for unfolding the energy spectrum of incident neutrons.

View Article and Find Full Text PDF

Strain-rate-dependent plasticity of Ta-Cu nanocomposites for therapeutic implants.

Sci Rep

September 2023

Physics Department and Research Center OPTIMAS, University Kaiserslautern-Landau, Erwin-Schrödinger-Straße, 67663, Kaiserslautern, Germany.

Recently, Ta/Cu nanocomposites have been widely used in therapeutic medical devices due to their excellent bioactivity and biocompatibility, antimicrobial property, and outstanding corrosion and wear resistance. Since mechanical yielding and any other deformation in the patient's body during treatment are unacceptable in medicine, the characterization of the mechanical behavior of these nanomaterials is of great importance. We focus on the microstructural evolution of Ta/Cu nanocomposite samples under uniaxial tensile loading conditions at different strain rates using a series of molecular dynamics simulations and compare to the reference case of pure Ta.

View Article and Find Full Text PDF

A magnetic xanthan hydrogel/silk fibroin nanobiocomposite (XG hydrogel/SF/FeO) was designed, fabricated, and characterized using analyzing methods such as FT-IR, EDX, FE-SEM, XRD, TGA, and VSM to evaluate the exact structure of product nanobiocomposite. The FE-SEM images reveal the presence of spherical shapes exhibiting a narrow size range and homogeneous distribution, measuring between 30 and 35 nm in diameter. The VSM analysis demonstrates the superparamagnetic properties of the XG hydrogel/SF/FeO nanobiocomposite, exhibiting a magnetic saturation of 54 emu/g at room temperature.

View Article and Find Full Text PDF

Self-assembled peptide/polymer hybrid nanoplatform for cancer immunostimulating therapies.

Drug Deliv Transl Res

February 2024

Department of Pharmacology, Pharmacy and Pharmaceutical Technology, CiMUS Research Center and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain.

Integrating peptide epitopes in self-assembling materials is a successful strategy to obtain nanovaccines with high antigen density and improved efficacy. In this study, self-assembling peptides containing MAGE-A3/PADRE epitopes were designed to generate functional therapeutic nanovaccines. To achieve higher stability, peptide/polymer hybrid nanoparticles were formulated by controlled self-assembly of the engineered peptides.

View Article and Find Full Text PDF

Severe asthma is a chronic inflammatory airway disease with great therapeutic challenges. Understanding the genetic and molecular mechanisms of severe asthma may help identify therapeutic strategies for this complex condition. RNA expression data were analyzed using a combination of artificial intelligence methods to identify novel genes related to severe asthma.

View Article and Find Full Text PDF

On-chip electromembrane extraction using deep eutectic solvent and red-green-blue analysis by quick-response code readable customized application on a smartphone for measuring salicylic acid in pharmaceutical and plasma samples.

J Chromatogr A

October 2023

Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran 15418-49611, Iran; Nanomaterial, Separation and Trace Analysis Research Lab, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran 15418-49611, Iran.

The current work presents an on-chip electromembrane extraction (OC-EME) method using deep eutectic solvent followed by QR code-based red-green-blue (RGB) analysis for measuring salicylic acid (SA) in plasma and pharmaceutical samples. The RGB analysis was performed based on forming the SA-Fe complex in the acceptor phase giving a purple solution. The QR code readable customized app provided rapid, easy, and cost-less qualification and quantification of SA with the aid of principal component analysis (PCA).

View Article and Find Full Text PDF

Cell invasion is an important process in cancer progression and recurrence. Invasion and implantation of cancer cells from their original place to other tissues, by disabling vital organs, challenges the treatment of cancer patients. Given the importance of the matter, many molecular treatments have been developed to inhibit cancer cell invasion.

View Article and Find Full Text PDF

Antimicrobial peptides have appeared to be promising candidates for therapeutic purposes due to their broad antimicrobial activity and non-toxicity. Histatin-5 (Hst-5) is a notable salivary antimicrobial peptide that exhibited therapeutic properties in the oral cavity. Oral mucositis is an acute inflammation of the oral cavity, following cancer therapy.

View Article and Find Full Text PDF

Prolyl specific oligopeptidase (POP), is one of the highly expressed enzymes in the brain and is a prime target to treat disorders related to the central nervous system. Here, we describe the structure-based design of the tacrine derivatives, selective, and brain-permeable POP inhibitors. These compounds inactivate POP in-vitro specifically and sustainably at very low concentrations (nano molar).

View Article and Find Full Text PDF

The thermal conductivity and stability of nanofluids pose challenges for their use as coolants in thermal applications. The present study investigates the heat transfer coefficient (HTC) of an AlMg nanofluid through the utilization of a novel beam displacement method. The study also examines the nanofluid's stability, particle size distribution (PSD), TEM micrograph, and electrical conductivity.

View Article and Find Full Text PDF

Foot-and-mouth disease (FMD) is a highly contagious animal disease caused by a ribonucleic acid (RNA) virus, with significant economic costs and uneven distribution across Asia, Africa, and South America. While spatial analysis and modeling of FMD are still in their early stages, this research aimed to identify socio-environmental determinants of FMD incidence in Iran at the provincial level by studying 135 outbreaks reported between March 21, 2017, and March 21, 2018. We obtained 46 potential socio-environmental determinants and selected four variables, including percentage of population, precipitation in January, percentage of sheep, and percentage of goats, to be used in spatial regression models to estimate variation in spatial heterogeneity.

View Article and Find Full Text PDF

Wilms tumor (WT) and Rhabdoid tumor (RT) are pediatric renal tumors and their differentiation is based on histopathological and molecular analysis. The present study aimed to introduce the panels of mRNAs and microRNAs involved in the pathogenesis of these cancers using deep learning algorithms. Filter, graph, and association rule mining algorithms were applied to the mRNAs/microRNAs data.

View Article and Find Full Text PDF

This paper proposes a new framework for evaluating water and environmental resources carrying capacity (WERCC) based on the concept of resilience under uncertainty. First, several quantitative and qualitative criteria based on the seven principles of resilience and the Pressure-Support-State (PSS) framework are defined to incorporate the positive and negative impacts of human interventions and natural factors on water resources and the environment. The resilience principles include redundancy and diversity, managing connectivity, managing slow variables and their feedbacks, fostering complex adaptive system (CAS) thinking, encouraging learning, broadening participation, and promoting polycentric governance.

View Article and Find Full Text PDF

The domino process of the palladium-catalyzed coupling reaction of isocyanides with 2-azirine provides various tetrasubstituted pyrimidines via one C-C bond and two C-N bond formations with satisfactory yields. The title compounds are obtained with good functional group tolerance, high atom economy, and broad substrate scopes.

View Article and Find Full Text PDF

There are various reports about the critical exponents associated with the depinning transition. In this study, we investigate how the disorder strength present in the support can account for this diversity. Specifically, we examine the depinning transition in the quenched Edwards-Wilkinson (QEW) model on a correlated square lattice, where the correlations are modeled using fractional Brownian motion (FBM) with a Hurst exponent of H.

View Article and Find Full Text PDF

An efficient procedure to access a variety of connected imidazo[1,2-]pyridine and benzimidazole skeletons through the C-N bond was described as a new type of Buchwald-Hartwig reaction. Furthermore, the bis(imidazo[1,2-]pyridin-3-yl)aryl-1,2-diamine scaffolds were obtained by changing the equivalent ratio of the starting materials. Some advantages of the protocol are the formation of four new bonds (C═C, C-N), a transition-metal-free reaction, a broad substrate scope, high yields, and mild reaction conditions.

View Article and Find Full Text PDF