25 results match your criteria: "Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC[Affiliation]"

Background: The complex aetiology of type 1 diabetes (T1D), characterised by a detrimental cross-talk between the immune system and insulin-producing beta cells, has hindered the development of effective disease-modifying therapies. The discovery that the pharmacological activation of LRH-1/NR5A2 can reverse hyperglycaemia in mouse models of T1D by attenuating the autoimmune attack coupled to beta cell survival/regeneration prompted us to investigate whether immune tolerisation could be translated to individuals with T1D by LRH-1/NR5A2 activation and improve islet survival.

Methods: Peripheral blood mononuclear cells (PBMCs) were isolated from individuals with and without T1D and derived into various immune cells, including macrophages and dendritic cells.

View Article and Find Full Text PDF

BCAS1 defines a heterogeneous cell population in diffuse gliomas.

Oncotarget

January 2024

Laboratory of Comparative Neurobiology, Institute Cavanilles of Biodiversity and Evolutionary Biology, University of Valencia-CIBERNED, Valencia, Spain.

Oligodendrocyte precursor markers have become of great interest to identify new diagnostic and therapeutic targets for diffuse gliomas, since state-of-the-art studies point towards immature oligodendrocytes as a possible source of gliomagenesis. Brain enriched myelin associated protein 1 (BCAS1) is a novel marker of immature oligodendrocytes and was proposed to contribute to tumorigenesis in non-central nervous system tumors. However, BCAS1 role in diffuse glioma is still underexplored.

View Article and Find Full Text PDF

Prostaglandins are lipid mediators involved in physiological processes, such as constriction or dilation of blood vessels, but also pathophysiological processes, which include inflammation, pain and fever. They are produced by almost all cell types in the organism by activation of Prostaglandin endoperoxide synthases/Cyclooxygenases. The inducible Prostaglandin Endoperoxide Synthase 2/Cyclooxygenase 2 (PTGS2/COX2) plays an important role in pathologies associated with inflammatory signaling.

View Article and Find Full Text PDF

We report for the first time the controlled drug release from a nanoscale Zr-based metal-organic framework (MOF), UiO-66, in the presence of the enzyme alkaline phosphatase (ALP). This unprecedented reactivity was possible thanks to the prior functionalization of the MOF with N-PEG-PO ligands, which were designed for three specific aims: (1) to impart colloidal stability in phosphate-containing media; (2) to endow the MOF with multifunctionality thanks to azide groups for the covalent attachment of an imaging agent by click-chemistry; and (3) to confer stimuli-responsive properties, specifically the selective release of doxorubicin triggered by the enzymatic activity of ALP. Cell studies revealed that the functionalization of the MOF with N-(PEG)-PO ligands improved their intracellular stability and led to a sustained drug release compared to the bare MOF.

View Article and Find Full Text PDF

Type 1 diabetes mellitus (T1DM) is an autoimmune disorder specifically targeting pancreatic islet beta cells. Despite many efforts focused on identifying new therapies able to counteract this autoimmune attack and/or stimulate beta cells regeneration, TD1M remains without effective clinical treatments providing no clear advantages over the conventional treatment with insulin. We previously postulated that both the inflammatory and immune responses and beta cell survival/regeneration must be simultaneously targeted to blunt the progression of disease.

View Article and Find Full Text PDF

Mesothelial cells form the mesothelium, a simple epithelium lining the walls of serous cavities and the surface of visceral organs. Although mesothelial cells are phenotypically well characterized, their immunoregulatory properties remain largely unknown, with only two studies reporting their capacity to inhibit T cells through TGF-β and their consumption of L-arginine by arginase-1. Whether human mesothelial cells can suppress other immune cells and possess additional leukosuppressive mechanisms, remain to be addressed to better delineate their therapeutic potential for cell therapy.

View Article and Find Full Text PDF

LRH-1/NR5A2 is implicated in islet morphogenesis postnatally, and its activation using the agonist BL001 protects islets against apoptosis, reverting hyperglycemia in mouse models of Type 1 Diabetes Mellitus. Islet transcriptome profiling revealed that the expression of PTGS2/COX2 is increased by BL001. Herein, we sought to define the role of LRH-1 in postnatal islet morphogenesis and chart the BL001 mode of action conferring beta cell protection.

View Article and Find Full Text PDF

During metastasis, invading tumor cells and circulating tumor cells (CTC) face multiple mechanical challenges during migration through narrow pores and cell squeezing. However, little is known on the importance and consequences of mechanical stress for tumor progression and success in invading a new organ. Recently, several studies have shown that cell constriction can lead to nuclear envelope rupture (NER) during interphase.

View Article and Find Full Text PDF

The dynamic nature of the nuclear envelope (NE) is often underestimated. The NE protects, regulates, and organizes the eukaryote genome and adapts to epigenetic changes and to its environment. The NE morphology is characterized by a wide range of diversity and abnormality such as invagination and blebbing, and it is a diagnostic factor for pathologies such as cancer.

View Article and Find Full Text PDF

Prefoldin is a heterohexameric complex conserved from archaea to humans that plays a cochaperone role during the co-translational folding of actin and tubulin monomers. Additional functions of prefoldin have been described, including a positive contribution to transcription elongation and chromatin dynamics in yeast. Here we show that prefoldin perturbations provoked transcriptional alterations across the human genome.

View Article and Find Full Text PDF

We recently demonstrated that the 'Metabesity' factor HMG20A regulates islet beta-cell functional maturity and adaptation to physiological stress such as pregnancy and pre-diabetes. HMG20A also dictates central nervous system (CNS) development via inhibition of the LSD1-CoREST complex but its expression pattern and function in adult brain remains unknown. Herein we sought to determine whether HMG20A is expressed in the adult CNS, specifically in hypothalamic astrocytes that are key in glucose homeostasis and whether similar to islets, HMG20A potentiates astrocyte function in response to environmental cues.

View Article and Find Full Text PDF

Diabetes is a chronic metabolic disease caused by an absolute or relative deficiency in functional pancreatic β-cells that leads to defective control of blood glucose. Current treatments for diabetes, despite their great beneficial effects on clinical symptoms, are not curative treatments, leading to a chronic dependence on insulin throughout life that does not prevent the secondary complications associated with diabetes. The overwhelming increase in DM incidence has led to a search for novel antidiabetic therapies aiming at the regeneration of the lost functional β-cells to allow the re-establishment of the endogenous glucose homeostasis.

View Article and Find Full Text PDF

NQO1 protects obese mice through improvements in glucose and lipid metabolism.

NPJ Aging Mech Dis

November 2020

Translational Gerontology Branch, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA.

Article Synopsis
  • Eating too much food can lead to health problems like insulin resistance, which affects how our body uses sugar.
  • In experiments with mice, activating a special protein called Nrf2 helped these mice stay healthy even when they ate a lot of fat by keeping their sugar levels balanced and helping them process fats better.
  • The mice with a special gene also showed fewer bad fat cells and better overall health because of improved metabolism and how their bodies used energy.
View Article and Find Full Text PDF

Thyroid hormones in diabetes, cancer, and aging.

Aging Cell

November 2020

Department of Cell Therapy and Regeneration, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain.

Thyroid function is central in the control of physiological and pathophysiological processes. Studies in animal models and human research have determined that thyroid hormones modulate cellular processes relevant for aging and for the majority of age-related diseases. While several studies have associated mild reductions on thyroid hormone function with exceptional longevity in animals and humans, alterations in thyroid hormones are serious medical conditions associated with unhealthy aging and premature death.

View Article and Find Full Text PDF

Canonical prefoldin is a protein cochaperone composed of six different subunits (PFDN1 to 6). PFDN1 overexpression promotes epithelial-mesenchymal transition (EMT) and increases the growth of xenograft lung cancer (LC) cell lines. We investigated whether this putative involvement of canonical PFDN in LC translates into the clinic.

View Article and Find Full Text PDF

The vast majority of type 1 diabetes (T1D) genetic association signals lie in noncoding regions of the human genome. Many have been predicted to affect the expression and secondary structure of long noncoding RNAs (lncRNAs), but the contribution of these lncRNAs to the pathogenesis of T1D remains to be clarified. Here, we performed a complete functional characterization of a lncRNA that harbors a single nucleotide polymorphism (SNP) associated with T1D, namely, Human pancreatic islets harboring the T1D-associated SNP risk genotype in (rs917997*CC) showed higher expression than islets harboring the heterozygous genotype (rs917997*CT).

View Article and Find Full Text PDF

Time for a paradigm shift in treating type 1 diabetes mellitus: coupling inflammation to islet regeneration.

Metabolism

March 2020

Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, 28029 Spain. Electronic address:

Type 1 diabetes mellitus (T1DM) is an autoimmune disease that targets the destruction of islet beta-cells resulting in insulin deficiency, hyperglycemia and death if untreated. Despite advances in medical devices and longer-acting insulin, there is still no robust therapy to substitute and protect beta-cells that are lost in T1DM. Attempts to refrain from the autoimmune attack have failed to achieve glycemic control in patients highlighting the necessity for a paradigm shift in T1DM treatment.

View Article and Find Full Text PDF

An inverse correlation between thyroid hormone levels and longevity has been reported in several species and reduced thyroid hormone levels have been proposed as a biomarker for healthy aging and metabolic fitness. However, hypothyroidism is a medical condition associated with compromised health and reduced life expectancy. Herein, we show, using wild-type and the Pax8 ablated model of hypothyroidism in mice, that hyperthyroidism and severe hypothyroidism are associated with an overall unhealthy status and shorter lifespan.

View Article and Find Full Text PDF

Pancreatic alpha-cell mass in the early-onset and advanced stage of a mouse model of experimental autoimmune diabetes.

Sci Rep

July 2019

Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), IBMC, Universidad Miguel Hernández, Elche, Spain.

Most studies in type 1 diabetes (T1D) have focused on the loss of the pancreatic beta-cell population. However, despite the involvement of the alpha-cell in the aetiology and complications of T1D, little is known about the regulation of the pancreatic alpha-cell mass in this disease. The need for a better understanding of this process is further emphasized by recent findings suggesting that alpha-cells may constitute a potential reservoir for beta-cell regeneration.

View Article and Find Full Text PDF

Targeting LRH-1/NR5A2 to treat type 1 diabetes mellitus.

Cell Stress

May 2018

Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, 41092, Spain.

Type 1 diabetes mellitus (T1DM) is defined as an autoimmune disease that targets the selective destruction of islet insulin-producing beta cells by infiltrating immune cells (insulitis). As a result, the organism is no longer able to produce insulin and develops hyperglycaemia and, if untreated, death. Despite advances in medical device technology and insulin analogues as well as strives in generating insulin-producing cells, there is still no robust therapy to substitute and protect beta cells that are lost in T1DM.

View Article and Find Full Text PDF

Advances in Genetics of Regeneration in Metabesity.

Genes (Basel)

May 2019

Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.

'Metabesity' is a recent term comprising a wide range of diseases with underlying metabolic disarrangements at its root, and whose aetiology lies in complex relationships among genes and the obesogenic environment to which individuals are currently exposed in most countries. Of note, epigenetic changes are increasingly being reported to play an outstanding role in carrying deleterious information that, together with susceptibility genes, boost the development of metabesity in subsequent generations. In this context, it is noteworthy to mention that the transition from the pre-industrial era to the current high-technology society and global economy, even after suffering two world wars, has been very fast.

View Article and Find Full Text PDF

The high prevalence of type 2 diabetes mellitus (T2DM), together with the fact that current treatments are only palliative and do not avoid major secondary complications, reveals the need for novel approaches to treat the cause of this disease. Efforts are currently underway to identify therapeutic targets implicated in either the regeneration or re-differentiation of a functional pancreatic islet β-cell mass to restore insulin levels and normoglycemia. However, T2DM is not only caused by failures in β-cells but also by dysfunctions in the central nervous system (CNS), especially in the hypothalamus and brainstem.

View Article and Find Full Text PDF

Therapeutic potential of pancreatic PAX4-regulated pathways in treating diabetes mellitus.

Curr Opin Pharmacol

December 2018

Andalusian Center for Molecular Biology and Regenerative Medicine - CABIMER, Junta de Andalucia - University of Pablo de Olavide - University of Seville - CSIC, Seville 41092, Spain. Electronic address:

The high prevalence of diabetes mellitus (DM) in our society, together with the fact that current treatments are only palliative and do not prevent the development of life threatening side effects, highlights the urgent need for novel therapies targeting the root cause of the disease. Independent of the etiology of DM, the definitive therapeutic approach will imply the restitution of an adequate functional β-cell mass capable of compensating for the insulin demand of the organism. The recent demonstration of heterogeneity within the islets as well as their innate plasticity has encouraged the development of studies aiming at potentiation of the regenerative capacity of islets.

View Article and Find Full Text PDF

LRH-1 agonism favours an immune-islet dialogue which protects against diabetes mellitus.

Nat Commun

April 2018

Department of Cell Regeneration and Advanced Therapies, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, 41092, Spain.

Type 1 diabetes mellitus (T1DM) is due to the selective destruction of islet beta cells by immune cells. Current therapies focused on repressing the immune attack or stimulating beta cell regeneration still have limited clinical efficacy. Therefore, it is timely to identify innovative targets to dampen the immune process, while promoting beta cell survival and function.

View Article and Find Full Text PDF

The type 2 diabetes-associated HMG20A gene is mandatory for islet beta cell functional maturity.

Cell Death Dis

February 2018

Department of Cell Regeneration and Advanced Therapies, Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain.

HMG20A (also known as iBRAF) is a chromatin factor involved in neuronal differentiation and maturation. Recently small nucleotide polymorphisms (SNPs) in the HMG20A gene have been linked to type 2 diabetes mellitus (T2DM) yet neither expression nor function of this T2DM candidate gene in islets is known. Herein we demonstrate that HMG20A is expressed in both human and mouse islets and that levels are decreased in islets of T2DM donors as compared to islets from non-diabetic donors.

View Article and Find Full Text PDF