131 results match your criteria: "Joint Mass Spectrometry Centre[Affiliation]"

To our knowledge, this study presents the first implementation of wavelength-resolved resonance-enhanced multiphoton ionization (REMPI) spectroscopy under atmospheric pressure ionization conditions using a high-resolution mass spectrometric system. Atmospheric pressure laser ionization MS spectroscopic measurements were conducted on over 70 different polycyclic aromatic hydrocarbons (PAHs) and hetero-PAHs (N, S, and O) in standard solutions, as well as three complex PAH-containing samples. The results demonstrate the successful transfer of REMPI spectroscopy from vacuum to atmospheric pressure conditions, maintaining spectral integrity without significant band broadening.

View Article and Find Full Text PDF

Synthetic cannabinoids (SCs) are one of the largest groups of new psychoactive substances (NPSs). However, the relationship between their chemical structure and the affinity to human CB receptors (hCB), which mediates their psychotropic activity, is not well understood. Herein, the synthesis of the 2-, 4-, 5-, 6- and 7-chloroindole analogues of the synthetic cannabimimetic MDMB-CHMICA, along with their analytical characterization via ultraviolet-visible (UV/VIS), infrared (IR), nuclear magnetic resonance (NMR) spectroscopy, and mass spectrometry, is described.

View Article and Find Full Text PDF

Road traffic noise and breast cancer: DNA methylation in four core circadian genes.

Clin Epigenetics

November 2024

Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden.

Background: Transportation noise has been linked with breast cancer, but existing literature is conflicting. One proposed mechanism is that transportation noise disrupts sleep and the circadian rhythm. We investigated the relationships between road traffic noise, DNA methylation in circadian rhythm genes, and breast cancer.

View Article and Find Full Text PDF

We introduce vacuum resonance-enhanced multiphoton ionization (REMPI) with high-resolution Orbitrap Fourier transform mass spectrometry (FTMS) for analyzing silylated polar compounds. UV laser radiation at 248 nm sensitively and selectively targets aromatic constituents, while high-resolution mass spectrometry (HRMS) enables high-performance mass spectrometric detection. This workflow enhances the detection confidence of polar constituents by identifying unique isotopologue patterns, including at the isotopic fine structure (IFS) level, in analytical standards and complex bio-oils.

View Article and Find Full Text PDF

Ion Source Complementarity for Characterization of Complex Organic Mixtures Using Fourier Transform Mass Spectrometry: A Review.

Mass Spectrom Rev

October 2024

Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, Rouen, France.

Article Synopsis
  • * The review focuses on different ionization techniques used in Fourier transform mass spectrometry (FT-MS) for characterizing these mixtures, including electrospray ionization (ESI) and atmospheric pressure photoionization (APPI), among others.
  • * It highlights the use of these ionization methods in direct introduction and their integration with chromatographic techniques like gas and liquid chromatography to enhance molecular analysis.
View Article and Find Full Text PDF

Antibiotic resistance has become a primary concern in medicine because of the overuse and misuse of classical pharmaceuticals. Recently, nonbiological complex drugs (NBCDs) have gained interest for their complex pharmacological profiles. Bituminosulfonates, which have lately been tentatively allocated toward NBCDs, are pharmacologically well-studied and show low potential in resistance development.

View Article and Find Full Text PDF

Peatland fires emit organic carbon-rich particulate matter into the atmosphere. Boreal and Arctic peatlands are becoming more vulnerable to wildfires, resulting in a need for better understanding of the emissions of these special fires. Extractable, nonpolar, and low-polar organic aerosol species emitted from laboratory-based boreal and Arctic peat-burning experiments are analyzed by direct-infusion atmospheric pressure photoionization (APPI) ultrahigh-resolution mass spectrometry (UHRMS) and compared to time-resolved APPI UHRMS evolved gas analysis from the thermal analysis of peat under inert nitrogen (pyrolysis) and oxidative atmosphere.

View Article and Find Full Text PDF

Emissions from road traffic and residential heating contribute to urban air pollution. Advances in emission reduction technologies may alter the composition of emissions and affect their fate during atmospheric processing. Here, emissions of a gasoline car and a wood stove, both equipped with modern emission mitigation technology, were photochemically aged in an oxidation flow reactor to the equivalent of one to five days of photochemical aging.

View Article and Find Full Text PDF

The combustion of traditional fuels in low-income countries, including those in sub-Saharan Africa, leads to extensive indoor particle exposure. Yet, the related health consequences in this context are understudied. This study aimed to evaluate the in vitro toxicity of combustion-derived particles relevant for Sub-Saharan household environments.

View Article and Find Full Text PDF

Introduction: Placental function is essential for fetal development, but it may be susceptible to malnutrition and environmental stressors.

Objective: To assess the impact of toxic and essential trace elements in placenta on placental function.

Methods: Toxic metals (cadmium, lead, mercury, cobalt) and essential elements (copper, manganese, zinc, selenium) were measured in placenta of 406 pregnant women in northern Sweden using ICP-MS.

View Article and Find Full Text PDF

The reliability of analytical results is critical and indispensable when applied in regulated environments such as the pharmaceutical industry. Therefore, analytical workflows must be validated. However, validation guidelines are often designed for quantitative targeted analysis and rarely apply to qualitative untargeted approaches.

View Article and Find Full Text PDF

Laser-Pulse-Length Effects in Ultrafast Laser Desorption.

Anal Chem

December 2023

Joint Mass Spectrometry Centre, Analytical Chemistry, University of Rostock, 18059 Rostock, Germany.

Shortening the laser pulse length opens up new opportunities for laser desorption (LD) of molecules, with benefits for mass spectrometry (MS) sampling and ionization. The capability to ablate any material without the need for an absorbing matrix and the decrease of thermal damage and molecular fragmentation has promoted various applications with very different parameters and postionization techniques. However, the key issues of the optimum laser pulse length and intensity to achieve efficient and gentle desorption of molecules for postionization in MS are not resolved, although these parameters determine the costs and complexity of the required laser system.

View Article and Find Full Text PDF

Recycling of fiber reinforced composites: Online mass spectrometric tracing, offline physicochemical speciation and toxicological evaluation of a pilot plant pyrolytic conversion.

Waste Manag

January 2024

Joint Mass Spectrometry Centre / Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany; Department Life, Light & Matter (LLM), University of Rostock, 18059 Rostock, Germany; Joint Mass Spectrometry Centre, Cooperation Group "Comprehensive Molecular Analytics" (CMA), Helmholtz Zentrum München, Neuherberg 85764, Germany.

The increasing demand for lightweight materials with exceptional stability and durability has resulted in a significant rise in fiber-reinforced plastic (FRP) production. These materials find applications in various fields. However, the exceptional properties and diverse compositional range of FRPs pose challenges to conventional recycling strategies.

View Article and Find Full Text PDF

Wildfire plume ageing in the Photochemical Large Aerosol Chamber (PHOTO-LAC).

Environ Sci Process Impacts

January 2024

Department of Analytical and Technical Chemistry, Chair of Analytical Chemistry, Joint Mass Spectrometry Centre (JMSC), University of Rostock, 18059, Rostock, Germany.

Plumes from wildfires are transported over large distances from remote to populated areas and threaten sensitive ecosystems. Dense wildfire plumes are processed by atmospheric oxidants and complex multiphase chemistry, differing from processes at typical ambient concentrations. For studying dense biomass burning plume chemistry in the laboratory, we establish a Photochemical Large Aerosol Chamber (PHOTO-LAC) being the world's largest aerosol chamber with a volume of 1800 m and provide its figures of merit.

View Article and Find Full Text PDF

Pyrolysis is a promising way to convert plastic waste into valuable resources. However, for downstream upgrading processes, many undesirable species, such as conjugated diolefins or heteroatom-containing compounds, can be generated during this pyrolysis. In-depth chemical characterization is therefore required to improve conversion and valorization.

View Article and Find Full Text PDF

Systems toxicology of complex wood combustion aerosol reveals gaseous carbonyl compounds as critical constituents.

Environ Int

September 2023

Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, Campus North, Eggenstein-Leopoldshafen, Germany. Electronic address:

Epidemiological studies identified air pollution as one of the prime causes for human morbidity and mortality, due to harmful effects mainly on the cardiovascular and respiratory systems. Damage to the lung leads to several severe diseases such as fibrosis, chronic obstructive pulmonary disease and cancer. Noxious environmental aerosols are comprised of a gas and particulate phase representing highly complex chemical mixtures composed of myriads of compounds.

View Article and Find Full Text PDF

Humic-like substances (HULIS), known for their substantial impact on the atmosphere, are identified in marine diesel engine emissions obtained from five different fuels at two engine loads simulating real world scenarios as well as the application of wet sulfur scrubbers. The HULIS chemical composition is characterized by electrospray ionization (ESI) ultrahigh resolution mass spectrometry and shown to contain partially oxidized alkylated polycyclic aromatic compounds as well as partially oxidized aliphatic compounds, both including abundant nitrogen- and sulfur-containing species, and clearly different to HULIS emitted from biomass burning. Fuel properties such as sulfur content and aromaticity as well as the fuel combustion efficiency and engine mode are reflected in the observed HULIS composition.

View Article and Find Full Text PDF

Nicotine pouches contain fewer characteristic toxicants than conventional tobacco products. However, the associated risks in terms of toxicity and addiction potential are still unclear. Therefore, endpoints of toxicity and contents of flavoring substances were investigated in this study.

View Article and Find Full Text PDF

Photoionization schemes for mass spectrometry, either by laser or discharge lamps, have been widely examined and deployed. In this work, the ionization characteristics of a xenon discharge lamp (Xe-APPI, 9.6/8.

View Article and Find Full Text PDF

Nicotine pouches are oral products that deliver nicotine without containing tobacco. Previous studies mainly focused on the determination of known tobacco toxicants, while yet no untargeted analysis has been published on unknown constituents, possibly contributing to toxicity. Furthermore, additives might enhance product attractiveness.

View Article and Find Full Text PDF

Complex molecular mixtures are encountered in almost all research disciplines, such as biomedical 'omics, petroleomics, and environmental sciences. State-of-the-art characterization of sample materials related to these fields, deploying high-end instrumentation, allows for gathering large quantities of molecular composition data. One established technological platform is ultrahigh-resolution mass spectrometry, e.

View Article and Find Full Text PDF

Effective density (ρ) is an important property describing particle transportation in the atmosphere and in the human respiratory tract. In this study, the particle size dependency of ρ was determined for fresh and photochemically aged particles from residential combustion of wood logs and brown coal, as well as from an aerosol standard (CAST) burner. ρ increased considerably due to photochemical aging, especially for soot agglomerates larger than 100 nm in mobility diameter.

View Article and Find Full Text PDF

The prevalence of allergic diseases is constantly increasing since few decades. Anthropogenic ultrafine particles (UFPs) and allergenic aerosols is highly involved in this increase; however, the underlying cellular mechanisms are not yet understood. Studies observing these effects focused mainly on singular in vivo or in vitro exposures of single particle sources, while there is only limited evidence on their subsequent or combined effects.

View Article and Find Full Text PDF

Biomass burning is a significant anthropogenic source of air pollution, including the preharvest burning of sugar cane. These burn events result in atmospheric emissions, including semivolatile organic compounds, that may have adverse impacts on air quality and human health on a local, regional, and even a global scale. Gaseous and particulate polycyclic aromatic hydrocarbon (PAH) emissions from various sugar cane burn events in the province of Kwa-Zulu Natal in South Africa were simultaneously sampled using a portable denuder sampling technology, consisting of a quartz fiber filter sandwiched between two polydimethylsiloxane multichannel traps.

View Article and Find Full Text PDF

The comprehensive chemical description of air pollution is a prerequisite for understanding atmospheric transformation processes and effects on climate and environmental health. In this study, a prototype vacuum photoionization Orbitrap mass spectrometer was evaluated for field-suitability by an online on-site investigation of emissions from a ship diesel engine. Despite remote measurements in a challenging environment, the mass spectrometric performance could fully be exploited.

View Article and Find Full Text PDF