2,174 results match your criteria: "Joint Genome Institute[Affiliation]"

Lorchels, also known as false morels (Gyromitra sensu lato), are iconic due to their brain-shaped mushrooms and production of gyromitrin, a deadly mycotoxin. Molecular phylogenetic studies have hitherto failed to resolve deep-branching relationships in the lorchel family, Discinaceae, hampering our ability to settle longstanding taxonomic debates and to reconstruct the evolution of toxin production. We generated 75 draft genomes from cultures and ascomata (some collected as early as 1960), conducted phylogenomic analyses using 1542 single-copy orthologs to infer the early evolutionary history of lorchels, and identified genomic signatures of trophic mode and mating-type loci to better understand lorchel ecology and reproductive biology.

View Article and Find Full Text PDF

The earthball , an ectomycorrhizal basidiomycete belonging to the Sclerodermataceae family, serves as a significant mutualistic tree symbiont globally. Originally, two genetically sequenced strains of this genus were obtained from fruiting bodies collected under chestnut trees (). These strains were utilized to establish ectomycorrhizal roots of chestnut seedlings.

View Article and Find Full Text PDF

Ecology and evolution are considered distinct processes that interact on contemporary time scales in microbiomes. Here, to observe these processes in a natural system, we collected a two-decade, 471-metagenome time series from Lake Mendota (Wisconsin, USA). We assembled 2,855 species-representative genomes and found that genomic change was common and frequent.

View Article and Find Full Text PDF

Separation of life stages within anaerobic fungi (Neocallimastigomycota) highlights differences in global transcription and metabolism.

Fungal Genet Biol

December 2024

University of California, Santa Barbara, Department of Chemical Engineering, Santa Barbara, CA 93106, USA; Joint BioEnergy Institute (JBEI), Emeryville, CA, 94608, United States. Electronic address:

Anaerobic gut fungi of the phylum Neocallimastigomycota are microbes proficient in valorizing low-cost but difficult-to-breakdown lignocellulosic plant biomass. Characterization of different fungal life stages and how they contribute to biomass breakdown are critical for biotechnological applications, yet we lack foundational knowledge about the transcriptional, metabolic, and enzyme secretion behavior of different life stages of anaerobic gut fungi: zoospores, germlings, immature thalli, and mature zoosporangia. A Miracloth-based technique was developed to enrich cell pellets with zoospores - the free-swimming, flagellated, young life stage of anaerobic gut fungi.

View Article and Find Full Text PDF

In plants, cellular function is orchestrated by three distinct genomes located within the nucleus, mitochondrion, and plastid. These genomes are interdependent, requiring tightly coordinated maintenance and expression. Plastids host several multisubunit protein complexes encoded by both the plastid and nuclear genomes.

View Article and Find Full Text PDF

Omics-driven onboarding of the carotenoid producing red yeast Xanthophyllomyces dendrorhous CBS 6938.

Appl Microbiol Biotechnol

December 2024

Life Sciences and Bioengineering Center, Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.

Transcriptomics is a powerful approach for functional genomics and systems biology, yet it can also be used for genetic part discovery. Here, we derive constitutive and light-regulated promoters directly from transcriptomics data of the basidiomycete red yeast Xanthophyllomyces dendrorhous CBS 6938 (anamorph Phaffia rhodozyma) and use these promoters with other genetic elements to create a modular synthetic biology parts collection for this organism. X.

View Article and Find Full Text PDF

Genome assembly and annotation of microalga C018.

Microbiol Resour Announc

December 2024

Marine Laboratory, Duke University, Beaufort, North Carolina, USA.

The microalga is an important organism for algae-based biocommodity production of food, feed, and fuel, among other products. Using PacBio Revio, we sequenced, assembled, and annotated a 26.41 Mbp C018 genome.

View Article and Find Full Text PDF

A novel open-source cultivation system helps establish the first full cycle chemosynthetic symbiosis model system involving the giant ciliate .

Front Microbiol

December 2024

Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States.

Symbiotic interactions drive species evolution, with nutritional symbioses playing vital roles across ecosystems. Chemosynthetic symbioses are globally distributed and ecologically significant, yet the lack of model systems has hindered research progress. The giant ciliate and its sulfur-oxidizing symbionts represent the only known chemosynthetic symbiosis with a short life span that has been transiently cultivated in the laboratory.

View Article and Find Full Text PDF

The protein structurome of Orthornavirae and its dark matter.

mBio

December 2024

Division of Intramural Research, Computational Biology Branch, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA.

Unlabelled: Metatranscriptomics is uncovering more and more diverse families of viruses with RNA genomes comprising the viral kingdom Orthornavirae in the realm Riboviria. Thorough protein annotation and comparison are essential to get insights into the functions of viral proteins and virus evolution. In addition to sequence- and hmm profile‑based methods, protein structure comparison adds a powerful tool to uncover protein functions and relationships.

View Article and Find Full Text PDF

Alga-dominated geothermal spring communities in Yellowstone National Park (YNP), USA, have been the focus of many studies, however, relatively little is known about the composition and community interactions which underpin these ecosystems. Our goal was to determine, in three neighboring yet distinct environments in Lemonade Creek, YNP, how cells cope with abiotic stressors over the diurnal cycle. All three environments are colonized by two photosynthetic lineages, and , both of which are extremophilic Cyanidiophyceae red algae.

View Article and Find Full Text PDF

Transcriptomic Analysis of the CAM Species Under Low- and High-Temperature Regimes.

Plants (Basel)

December 2024

Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.

Temperature stress is one of the major limiting environmental factors that negatively impact global crop yields. is an obligate crassulacean acid metabolism (CAM) plant species, exhibiting much higher water-use efficiency and tolerance to drought and heat stresses than C or C plant species. Previous studies on gene expression responses to low- or high-temperature stress have been focused on C and C plants.

View Article and Find Full Text PDF

Integrative analysis of the 3D genome and epigenome in mouse embryonic tissues.

Nat Struct Mol Biol

December 2024

Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA.

While a rich set of putative cis-regulatory sequences involved in mouse fetal development have been annotated recently on the basis of chromatin accessibility and histone modification patterns, delineating their role in developmentally regulated gene expression continues to be challenging. To fill this gap, here we mapped chromatin contacts between gene promoters and distal sequences across the genome in seven mouse fetal tissues and across six developmental stages of the forebrain. We identified 248,620 long-range chromatin interactions centered at 14,138 protein-coding genes and characterized their tissue-to-tissue variations and developmental dynamics.

View Article and Find Full Text PDF

Introduction: The agriculture genomics community has numerous data submission standards available, but the standards for describing and storing single-cell (SC, e.g., scRNA- seq) data are comparatively underdeveloped.

View Article and Find Full Text PDF

RNA methylation plays a central regulatory role in plant biology and is a relatively new target for plant improvement efforts. In nearly all cases, perturbation of the RNA methylation machinery results in deleterious phenotypes. However, a recent landmark paper reported that transcriptome-wide use of the human RNA demethylase FTO substantially increased the yield of rice and potatoes.

View Article and Find Full Text PDF

Green microalga conserves substrate uptake pattern but changes their metabolic uses across trophic transition.

Front Microbiol

November 2024

Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.

The terrestrial green alga is an emerging model species with potential applications including production of triacylglycerol or astaxanthin. How interacts with the diverse substrates during trophic transitions is unknown. To characterize its substrate utilization and secretion dynamics, we cultivated the alga in a soil-based defined medium in transition between conditions with and without glucose supplementation.

View Article and Find Full Text PDF

Specialized or secondary metabolites are small molecules of biological origin, often showing potent biological activities with applications in agriculture, engineering and medicine. Usually, the biosynthesis of these natural products is governed by sets of co-regulated and physically clustered genes known as biosynthetic gene clusters (BGCs). To share information about BGCs in a standardized and machine-readable way, the Minimum Information about a Biosynthetic Gene cluster (MIBiG) data standard and repository was initiated in 2015.

View Article and Find Full Text PDF

We report the genome sequences of four sp. strains isolated from the octocoral maintained long term at an aquarium facility. Our analysis reveals the coding potential for versatile polysaccharide metabolism; Type II, III, IV, and VI secretion systems; and the biosynthesis of novel ribosomally synthesized and post-translationally modified peptides.

View Article and Find Full Text PDF

Copper (Cu) is essential for respiration, neurotransmitter synthesis, oxidative stress response, and transcription regulation, with imbalances leading to neurological, cognitive, and muscular disorders. Here we show the role of a novel Cu-binding protein (Cu-BP) in mammalian transcriptional regulation, specifically on skeletal muscle differentiation using murine primary myoblasts. Utilizing synchrotron X-ray fluorescence-mass spectrometry, we identified murine cysteine-rich intestinal protein 2 (mCrip2) as a key Cu-BP abundant in both nuclear and cytosolic fractions.

View Article and Find Full Text PDF

An orphan gene BOOSTER enhances photosynthetic efficiency and plant productivity.

Dev Cell

November 2024

Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.

Article Synopsis
  • The text discusses how transferring DNA from organelles to the nucleus is crucial for the evolution of eukaryotes, highlighted by a study that identified a specific gene (BSTR) linked to photosynthesis in Populus trichocarpa.
  • BSTR has three exons, with two derived from endophytic sources and one including a large part of a plastid gene related to Rubisco, which is essential for photosynthesis.
  • Overexpressing BSTR in poplar and Arabidopsis plants led to significant increases in plant height (up to 200%) and biomass (up to 200%), demonstrating its potential for enhancing growth under field conditions.
View Article and Find Full Text PDF

Congenital heart defects (CHD) arise in part due to inherited genetic variants that alter genes and noncoding regulatory elements in the human genome. These variants are thought to act during fetal development to influence the formation of different heart structures. However, identifying the genes, pathways, and cell types that mediate these effects has been challenging due to the immense diversity of cell types involved in heart development as well as the superimposed complexities of interpreting noncoding sequences.

View Article and Find Full Text PDF

Methanogens implicated by DNA evidence.

Nat Rev Microbiol

November 2024

DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.

View Article and Find Full Text PDF

Sex chromosomes have evolved hundreds of times across the flowering plant tree of life; their recent origins in some members of this clade can shed light on the early consequences of suppressed recombination, a crucial step in sex chromosome evolution. Amborella trichopoda, the sole species of a lineage that is sister to all other extant flowering plants, is dioecious with a young ZW sex determination system. Here we present a haplotype-resolved genome assembly, including highly contiguous assemblies of the Z and W chromosomes.

View Article and Find Full Text PDF

In May and June of 2021, marine microbial samples were collected for DNA sequencing in East Sound, WA, USA every 4 hours for 22 days. This high temporal resolution sampling effort captured the last 3 days of a Rhizosolenia sp. bloom, the initiation and complete bloom cycle of Chaetoceros socialis (8 days), and the following bacterial bloom (2 days).

View Article and Find Full Text PDF

is a Gram-positive anaerobic spore-forming bacterial pathogen of humans and animals. also produces type IV pili (T4P) and has two complete sets of T4P-associated genes, one of which has been shown to produce surface pili needed for cell adherence. One hypothesis about the role of the other set of T4P genes is that they could comprise a system analogous to the type II secretion systems (TTSS) found in Gram-negative bacteria, which is used to export folded proteins from the periplasm through the outer membrane to the extracellular environment.

View Article and Find Full Text PDF

Hydrophobins from mediate fungal interactions with microplastics.

bioRxiv

November 2024

Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, DE 19716.

Microplastics present myriad ecological and human health risks including serving as a vector for pathogens in human and animal food chains. However, the specific mechanisms by which pathogenic fungi colonize these microplastics have yet to be explored. In this work, we examine the opportunistic fungal pathogen, and other common soil and marine , which we found bind microplastics tightly.

View Article and Find Full Text PDF