Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_sessionf4ncnmrk3l752noqoavm6immhacov4cd): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
51 results match your criteria: "Joint BioEnergy Institute (JBEI)[Affiliation]"
Curr Opin Biotechnol
August 2024
Waite Research Institute, School of Agriculture, Food and Wine, Waite Campus, University of Adelaide, Glen Osmond, SA 5064, Australia; ARC Centre of Excellence in Plants for Space, Waite Campus, Glen Osmond, SA 5064, Australia; Environmental Genomics and Systems Biology Division, the Joint BioEnergy Institute (JBEI), Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA. Electronic address:
ACS Synth Biol
July 2024
Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States.
Polymer production is rapidly increasing, but there are no large-scale technologies available to effectively mitigate the massive accumulation of these recalcitrant materials. One potential solution is the development of a carbon-neutral polymer life cycle, where microorganisms convert plant biomass to chemicals, which are used to synthesize biodegradable materials that ultimately contribute to the growth of new plants. Realizing a circular carbon life cycle requires the integration of knowledge across microbiology, bioengineering, materials science, and organic chemistry, which itself has hindered large-scale industrial advances.
View Article and Find Full Text PDFBiotechnol Prog
December 2024
Department of Chemical Engineering, University of California, Santa Barbara, California, USA.
Anaerobic microbial communities are often highly degradative, such as those found in the herbivore rumen and large-scale anaerobic digesters. Since the microbial communities in these systems degrade recalcitrant organic polymers, we hypothesize that some microbes in anaerobic environments may be involved in man-made plastic association, deformation, or even breakdown. While efforts have been put toward characterizing microbial communities, many microbes remain unidentified until they can be sufficiently cultivated to generate enough genetic material to assemble high-quality metagenome assemblies and reference genomes.
View Article and Find Full Text PDFBioresour Technol
January 2024
Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA; Joint BioEnergy Institute (JBEI), Emeryville, CA 94608, USA; Biological Engineering Program, University of California, Santa Barbara, CA 93106, USA. Electronic address:
Anaerobic gut fungi (AGF) have potential to valorize lignocellulosic biomass owing to their diverse repertoire of carbohydrate-active enzymes (CAZymes). However, AGF metabolism is poorly understood, and no stable genetic tools are available to manipulate growth and metabolic flux to enhance production of specific targets, e.g.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
October 2023
Department of Chemical Engineering, University of California, Santa Barbara, CA, USA.
Anaerobic fungi found in the guts of large herbivores are prolific biomass degraders whose genomes harbor a wealth of carbohydrate-active enzymes (CAZymes), of which only a handful are structurally or biochemically characterized. Here, we report the structure and kinetic rate parameters for a glycoside hydrolase (GH) family 5 subfamily 4 enzyme (CelD) from Piromyces finnis, a modular, cellulosome-incorporated endoglucanase that possesses three GH5 domains followed by two C-terminal fungal dockerin domains (double dockerin). We present the crystal structures of an apo wild-type CelD GH5 catalytic domain and its inactive E154A mutant in complex with cellotriose at 2.
View Article and Find Full Text PDFProtein Sci
September 2023
Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, USA.
Membrane-embedded transporters impart essential functions to cells as they mediate sensing and the uptake and extrusion of nutrients, waste products, and effector molecules. Promiscuous multidrug exporters are implicated in resistance to drugs and antibiotics and are highly relevant for microbial engineers who seek to enhance the tolerance of cell factory strains to hydrophobic bioproducts. Here, we report on the identification of small multidrug resistance (SMR) transporters in early-branching anaerobic fungi (Neocallimastigomycetes).
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
December 2022
Joint BioEnergy Institute (JBEI), 5885 Hollis St., Emeryville, CA, 94608, USA.
With the increasing need for microbial bioproduction to replace petrochemicals, it is critical to develop a new industrial microbial workhorse that improves the conversion of lignocellulosic carbon to biofuels and bioproducts in an economically feasible manner. Pseudomonas putida KT2440 is a promising microbial host due to its capability to grow on a broad range of carbon sources and its high tolerance to xenobiotics. In this study, we engineered P.
View Article and Find Full Text PDFChemSusChem
October 2022
State Key Laboratory of Organic-Inorganic Composites and College of Life Science and Technology, Beijing University of Chemical Technology, North 3rd Ring East, # 15, 100029, Beijing, P. R. China.
Lignin nanoparticles (LNPs) are usually produced from lignin solution through supersaturation. The structure of the lignin in solution is still poorly understood due to structural variability of isolated lignins. Here, lignins were extracted from different plants to establish a general pattern of their structure in several lignin solvents.
View Article and Find Full Text PDFBioresour Technol
August 2022
Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA; Joint BioEnergy Institute (JBEI), Emeryville, CA 94608, USA. Electronic address:
Anaerobic gut fungi (AGF) are lignocellulose degraders that naturally form biofilms in the rumen of large herbivores and in standard culture techniques. While biofilm formation enhances biomass degradation and carbohydrate-active enzyme (CAZyme) production in some bacteria and aerobic fungi, gene expression and metabolism in AGF biofilms have not been compared to non-biofilm cultures. Here, using the tunable morphology of the non-rhizoidal AGF, Caecomyces churrovis, the impacts of biofilm formation on AGF gene expression, metabolic flux, growth rate, and xylan degradation rate are quantified to inform future industrial scale-up efforts.
View Article and Find Full Text PDFInt J Biol Macromol
May 2022
State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring Road, Chao Yang District, Beijing 100029, China. Electronic address:
As an abundant biopolymer, lignin gains interest owing to its renewable nature and polyphenolic structure. It possesses many biological activities such as antioxidant activity, antimicrobial activity, and biocompatibility. Studies are being carried out to relate the biological activities to the polyphenolic structures.
View Article and Find Full Text PDFCarbohydr Polym
February 2022
State Key Laboratory of Organic-Inorganic Composites and College of Life Science and Technology, Beijing University of Chemical Technology, North 3(rd) Ring East, # 15, Beijing 100029, China. Electronic address:
Cellulose-dissolving ionic liquids (ILs) have been used in biomass pretreatment for over a decade. Cellulose solubility in the ILs is strongly inhibited by water, which has negative impacts on IL pretreatment and reuse of the recycled ILs. Here, a distillation and aeration apparatus was used as the reactor for biomass pretreatment in dilute aqueous IL solutions and in recycled IL liquor without drying or purification.
View Article and Find Full Text PDFCurr Opin Microbiol
December 2021
Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA; Joint BioEnergy Institute (JBEI), Emeryville, CA, 94608, USA. Electronic address:
Microbial consortia efficiently degrade complex biopolymers found in the organic fraction of municipal solid waste (OFMSW). Through enzyme production and division of labor during anaerobic digestion, microbial communities break down recalcitrant polymers and make fermentation products, including methane. However, microbial communities remain underutilized for waste degradation as it remains difficult to characterize and predict microbial interactions during waste breakdown, especially as cultivation conditions change drastically throughout anaerobic digestion.
View Article and Find Full Text PDFMicrob Cell Fact
October 2021
Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA.
Background: Quantification of individual species in microbial co-cultures and consortia is critical to understanding and designing communities with prescribed functions. However, it is difficult to physically separate species or measure species-specific attributes in most multi-species systems. Anaerobic gut fungi (AGF) (Neocallimastigomycetes) are native to the rumen of large herbivores, where they exist as minority members among a wealth of prokaryotes.
View Article and Find Full Text PDFCurr Opin Biotechnol
February 2022
Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA; Joint BioEnergy Institute (JBEI), Emeryville, CA 94608, USA. Electronic address:
Lignocellulose processing yields a heterogeneous mixture of substances, which are poorly utilized by current industrial strains. For efficient valorization of recalcitrant biomass, it is critical to identify and engineer new membrane proteins that enable the broad uptake of hydrolyzed substrates. Whereas glucose consumption rarely presents a bottleneck for cell factories, there is also a lack of transporters that allow co-consumption of glucose with other abundant biomass sugars such as xylose.
View Article and Find Full Text PDFmBio
August 2021
Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, USA.
Metab Eng
July 2021
Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA; Joint BioEnergy Institute (JBEI), Emeryville, CA, 94608, USA. Electronic address:
In the yeast Saccharomyces cerevisiae, microbial fuels and chemicals production on lignocellulosic hydrolysates is constrained by poor sugar transport. For biotechnological applications, it is desirable to source transporters with novel or enhanced function from nonconventional organisms in complement to engineering known transporters. Here, we identified and functionally screened genes from three strains of early-branching anaerobic fungi (Neocallimastigomycota) that encode sugar transporters from the recently discovered Sugars Will Eventually be Exported Transporter (SWEET) superfamily in Saccharomyces cerevisiae.
View Article and Find Full Text PDFMetab Eng
March 2021
Joint BioEnergy Institute (JBEI), 5885 Hollis St., Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. Electronic address:
The functionalization of terpenes using cytochrome P450 enzymes is a versatile route to the production of useful derivatives that can be further converted to value-added products. Many terpenes are hydrophobic and volatile making their availability as a substrate for P450 enzymes significantly limited during microbial production. In this study, we developed a strategy to improve the accessibility of terpene molecules for the P450 reaction by linking terpene synthase and P450 together.
View Article and Find Full Text PDFBiotechnol Biofuels
December 2020
Queensland Alliance for Agriculture and Food Innovation (QAAFI), Level 2, Queensland Biosciences Precinct [#80], The University of Queensland, St Lucia, QLD, 4072, Australia.
Background: The composition of biomass determines its suitability for different applications within a biorefinery system. The proportion of the major biomass fractions (sugar, cellulose, hemicellulose and lignin) may vary in different sugarcane genotypes and growth environments and different parts of the plant. This study investigated the composition of mature and immature internodes, roots and mature leaves of sugarcane.
View Article and Find Full Text PDFMethods Mol Biol
March 2021
TeselaGen Biotechnology, Inc., San Francisco, CA, USA.
Modern DNA assembly techniques are known for their potential to link multiple large DNA fragments together into even larger constructs in single pot reactions that are easier to automate and work more reliably than traditional cloning methods. The simplicity of the chemistry is in contrast to the increased work needed to design optimal reactions that maximize DNA fragment reuse, minimize cost, and organize thousands of potential chemical reactions. Here we examine available DNA assembly methods and describe through example, the construction of a complex but not atypical combinatorial and hierarchical library using protocols that are generated automatically with the assistance of modern synthetic biology software.
View Article and Find Full Text PDFMethods Mol Biol
March 2021
DOE Joint Genome Institute (JGI), Berkeley, CA, USA.
Biological computer-aided design and manufacturing (bioCAD/CAM) tools facilitate the design and build processes of engineering biological systems using iterative design-build-test-learn (DBTL) cycles. In this book chapter, we highlight some of the bioCAD/CAM tools developed and used at the US Department of Energy (DOE) Joint Genome Institute (JGI), Joint BioEnergy Institute (JBEI), and Agile BioFoundry (ABF). We demonstrate the use of these bioCAD/CAM tools on a common workflow for designing and building a multigene pathway in a hierarchical fashion.
View Article and Find Full Text PDFChembiochem
March 2020
Joint BioEnergy Institute (JBEI), 5885 Hollis Street, Emeryville, CA, 94608, USA.
We recently reported the discovery of phenylacetate decarboxylase (PhdB), representing one of only ten glycyl-radical-enzyme reaction types known, and a promising biotechnological tool for first-time biochemical synthesis of toluene from renewable resources. Here, we used experimental and computational data to evaluate the plausibility of three candidate PhdB mechanisms, involving either attack at the phenylacetate methylene carbon or carboxyl group [via H-atom abstraction from COOH or single-electron oxidation of COO (Kolbe-type decarboxylation)]. In vitro experimental data included assays with F-labeled phenylacetate, kinetic studies, and tests with site-directed PhdB mutants; computational data involved estimation of reaction energetics using density functional theory (DFT).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
July 2019
College of Chemistry, University of California, Berkeley, Berkeley, CA, 94270, USA.
Assaying for enzymatic activity is a persistent bottleneck in biocatalyst and drug development. Existing high-throughput assays for enzyme activity tend to be applicable only to a narrow range of biochemical transformations, whereas universal enzyme characterization methods usually require chromatography to determine substrate turnover, greatly diminishing throughput. We present an enzyme activity assay that allows the high-throughput mass-spectrometric detection of enzyme activity in complex matrices without the need for a chromatographic step.
View Article and Find Full Text PDFACS Synth Biol
June 2019
Joint BioEnergy Institute (JBEI), Emeryville , California 94608 , United States.
The Design-Build-Test-Learn (DBTL) cycle, facilitated by exponentially improving capabilities in synthetic biology, is an increasingly adopted metabolic engineering framework that represents a more systematic and efficient approach to strain development than historical efforts in biofuels and biobased products. Here, we report on implementation of two DBTL cycles to optimize 1-dodecanol production from glucose using 60 engineered Escherichia coli MG1655 strains. The first DBTL cycle employed a simple strategy to learn efficiently from a relatively small number of strains (36), wherein only the choice of ribosome-binding sites and an acyl-ACP/acyl-CoA reductase were modulated in a single pathway operon including genes encoding a thioesterase (UcFatB1), an acyl-ACP/acyl-CoA reductase (Maqu_2507, Maqu_2220, or Acr1), and an acyl-CoA synthetase (FadD).
View Article and Find Full Text PDFNanoscale Adv
January 2019
State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology North 3rd Ring East, # 15 Beijing 100029 China
Ethylene glycol (EG) starts to attract attention as a robust solvent for lignin processing. However its solution structure has not been revealed. In this effort, small angle neutron scattering (SANS) and dynamic light scattering are used to understand the dissolution of kraft lignin in EG and the impact of the resultant solution structure on nanoparticle preparation.
View Article and Find Full Text PDFNat Chem Biol
May 2018
Joint BioEnergy Institute (JBEI), Emeryville, CA, USA.
Microbial toluene biosynthesis was reported in anoxic lake sediments more than three decades ago, but the enzyme catalyzing this biochemically challenging reaction has never been identified. Here we report the toluene-producing enzyme PhdB, a glycyl radical enzyme of bacterial origin that catalyzes phenylacetate decarboxylation, and its cognate activating enzyme PhdA, a radical S-adenosylmethionine enzyme, discovered in two distinct anoxic microbial communities that produce toluene. The unconventional process of enzyme discovery from a complex microbial community (>300,000 genes), rather than from a microbial isolate, involved metagenomics- and metaproteomics-enabled biochemistry, as well as in vitro confirmation of activity with recombinant enzymes.
View Article and Find Full Text PDF