190 results match your criteria: "Jill Roberts Institute for Research in Inflammatory Bowel Disease.[Affiliation]"

Tertiary lymphoid structures (TLSs) are de novo ectopic lymphoid aggregates that regulate immunity in chronically inflamed tissues, including tumours. Although TLSs form due to inflammation-triggered activation of the lymphotoxin (LT)-LTβ receptor (LTβR) pathway, the inflammatory signals and cells that induce TLSs remain incompletely identified. Here we show that interleukin-33 (IL-33), the alarmin released by inflamed tissues, induces TLSs.

View Article and Find Full Text PDF

Host metabolism balances microbial regulation of bile acid signalling.

Nature

January 2025

Department of Chemistry and Chemical Biology, Boyce Thompson Institute, Cornell University, Ithaca, NY, USA.

Metabolites derived from the intestinal microbiota, including bile acids (BA), extensively modulate vertebrate physiology, including development, metabolism, immune responses and cognitive function. However, to what extent host responses balance the physiological effects of microbiota-derived metabolites remains unclear. Here, using untargeted metabolomics of mouse tissues, we identified a family of BA-methylcysteamine (BA-MCY) conjugates that are abundant in the intestine and dependent on vanin 1 (VNN1), a pantetheinase highly expressed in intestinal tissues.

View Article and Find Full Text PDF

A stromal inflammasome Ras safeguard against Myc-driven lymphomagenesis.

Nat Immunol

January 2025

Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.

The inflammasome plays multifaceted roles in cancer, but less is known about its function during premalignancy upon initial cell transformation. We report a homeostatic function of the inflammasome in suppressing malignant transformation through Ras inhibition. We identified increased hematopoietic stem cell (HSC) proliferation within the bone marrow of inflammasome-deficient mice.

View Article and Find Full Text PDF

The intestinal immune system must concomitantly tolerate food and commensals and protect against pathogens. Antigen-presenting cells (APCs) orchestrate these immune responses by presenting luminal antigens to CD4 T cells and inducing their differentiation into regulatory (pTreg) or inflammatory (Th) subsets. We used a proximity labeling method (LIPSTIC) to identify APCs that presented dietary antigens under tolerizing and inflammatory conditions and understand cellular mechanisms by which tolerance to food is induced and can be disrupted by infection.

View Article and Find Full Text PDF

Patterns of bacterial viability governing noncanonical inflammasome activation.

Curr Opin Immunol

February 2025

Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, USA; Immunology and Microbial Pathogenesis Programs, Weill Cornell and Sloan Kettering Institute Graduate School of Medical Sciences, New York, NY, USA. Electronic address:

Noncanonical inflammasomes are instrumental in defense against Gram-negative bacteria, activated primarily by bacterial lipopolysaccharide. This review examines commonalities and distinctions in noncanonical inflammasome activation either by virulence factor activity indicating cellular invasion or by detection of bacterial mRNA signaling the undesired presence of live bacteria in sterile tissue. These inflammasome triggers, alongside other examples discussed, reflect properties exclusive to live bacteria.

View Article and Find Full Text PDF

Tissue-resident immune cells, such as innate lymphoid cells, mediate protective or detrimental immune responses at barrier surfaces. Upon activation by stromal or epithelial cell-derived alarmins, group 2 innate lymphoid cells (ILC2s) are a rapid source of type 2 cytokines, such as IL-5. However, due to the overlap in effector functions, it remains unresolved whether ILC2s are an essential component of the type 2 response or whether their function can be compensated by other cells, such as T cells.

View Article and Find Full Text PDF

Fungal symbiont transmitted by free-living mice promotes type 2 immunity.

Nature

December 2024

Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.

The gut mycobiota is crucial for intestinal homeostasis and immune function. Yet its variability and inconsistent fungal colonization of laboratory mice hinders the study of the evolutionary and immune processes that underpin commensalism. Here, we show that Kazachstania pintolopesii is a fungal commensal in wild urban and rural mice, with an exceptional ability to colonize the mouse gastrointestinal tract and dominate the gut mycobiome.

View Article and Find Full Text PDF

Stressing out the intestinal microbiota via a brain-neuroglandular circuit.

Cell Res

November 2024

Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.

View Article and Find Full Text PDF
Article Synopsis
  • The intestine functions to absorb nutrients and water while maintaining tolerance to external environments, but its cellular and transcriptional dynamics are not fully understood.
  • Researchers created a detailed resource that maps the spatial and cellular structure of the mouse intestine in both healthy and stressed conditions.
  • The study revealed that the intestinal landscape is robust to microbiota influences and can adapt to inflammation through complex interactions between immune responses and structural cells.
View Article and Find Full Text PDF

Various bacteria are suggested to contribute to colorectal cancer (CRC) development, including pks Escherichia coli, which produces the genotoxin colibactin that induces characteristic mutational signatures in host epithelial cells. However, it remains unclear how the highly unstable colibactin molecule is able to access host epithelial cells to cause harm. Here, using the microbiota-dependent ZEB2-transgenic mouse model of invasive CRC, we demonstrate that the oncogenic potential of pks E.

View Article and Find Full Text PDF

Purpose Of Review: Bidirectional regulation between neurons and immune cells in the intestine governs essential physiological processes, including digestion, metabolism and motility, while also controlling intestinal inflammation and maintaining tissue homeostasis. This review covers recent advances and future research challenges focused on the regulatory molecules and potential therapeutic targets in neuron-immune interactions within the intestine.

Recent Findings: Recently identified molecular and cellular pathways have been shown to regulate neuron-immune cell cross talk in the context of maintaining tissue homeostasis, modulating inflammation, and promoting intestinal repair.

View Article and Find Full Text PDF

Focus on fungi.

Cell

September 2024

Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Fungi play critical roles in the homeostasis of ecosystems globally and have emerged as significant causes of an expanding repertoire of devastating diseases in plants, animals, and humans. In this Commentary, we highlight the importance of fungal pathogens and argue for concerted research efforts to enhance understanding of fungal virulence, antifungal immunity, novel drug targets, antifungal resistance, and the mycobiota to improve human health.

View Article and Find Full Text PDF
Article Synopsis
  • Neutrophil activation needs careful control to prevent diseases, as uncontrolled neutrophil extracellular traps (NETs) can cause more harm than good.
  • A receptor called MICL helps keep this process in check by recognizing DNA in NETs, and when it doesn't work properly, it can lead to too many NETs being formed.
  • In diseases like rheumatoid arthritis and lupus, there are autoantibodies that block MICL, which worsens the disease, but during certain infections, like with a fungus, having more NETs can actually help fight off the infection.
View Article and Find Full Text PDF

RIPK3 and caspase-8 interpret cytokine signals to regulate ILC3 survival in the gut.

Mucosal Immunol

December 2024

Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA. Electronic address:

Group 3 innate lymphoid cells (ILC3s) are abundant in the developing or healthy intestine to critically support tissue homeostasis in response to microbial colonization. However, intestinal ILC3s are reduced during chronic infections, colorectal cancer, or inflammatory bowel disease (IBD), and the mechanisms driving these alterations remain poorly understood. Here we employed RNA sequencing of ILC3s from IBD patients and observed a significant upregulation of RIPK3, the central regulator of necroptosis, during intestinal inflammation.

View Article and Find Full Text PDF

Hundreds of microbiota gene expressions are significantly different between healthy and diseased humans. The "bottleneck" preventing a mechanistic dissection of how they affect host biology/disease is that many genes are encoded by nonmodel gut commensals and not genetically manipulatable. Approaches to efficiently identify their gene transfer methodologies and build their gene manipulation tools would enable mechanistic dissections of their impact on host physiology.

View Article and Find Full Text PDF

CTLA-4-expressing ILC3s restrain interleukin-23-mediated inflammation.

Nature

June 2024

Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA.

Interleukin (IL-)23 is a major mediator and therapeutic target in chronic inflammatory diseases that also elicits tissue protection in the intestine at homeostasis or following acute infection. However, the mechanisms that shape these beneficial versus pathological outcomes remain poorly understood. To address this gap in knowledge, we performed single-cell RNA sequencing on all IL-23 receptor-expressing cells in the intestine and their acute response to IL-23, revealing a dominance of T cells and group 3 innate lymphoid cells (ILC3s).

View Article and Find Full Text PDF

Seeing is believing: a breakthrough to visualize necrosomes in the tissue.

EMBO Mol Med

July 2024

Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.

Detection of necroptosis in the tissue has been a long-standing roadblock in determining the disease states and pathological conditions associated with this inflammatory form of cell death. In this issue of EMBO Molecular Medicine, Chiou et al report a definitive method for necroptosis detection in situ (Chiou et al, 2024). The authors utilize this technical advance to unequivocally identify necroptosis lesions within the intestinal epithelium, and further reveal the simultaneous presence of distinct apoptotic and necroptotic lesions in human inflammatory bowel disease.

View Article and Find Full Text PDF

Background: Parasitic helminths influence the composition of the gut microbiome. However, the microbiomes of individuals living in helminth-endemic regions are understudied. The Orang Asli, an indigenous population in Malaysia with high burdens of the helminth Trichuris trichiura, display microbiotas enriched in Clostridiales, an order of spore-forming obligate anaerobes with immunogenic properties.

View Article and Find Full Text PDF

Nutritional modulation of antitumor immunity.

Curr Opin Immunol

April 2024

Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA; Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY 10021, USA. Electronic address:

The composition and quantity of food we eat have a drastic impact on the development and function of immune responses. In this review, we highlight defined nutritional interventions shown to enhance antitumor immunity, including ketogenic, low-protein, high-fructose, and high-fiber diets, as well as dietary restriction. We propose that incorporating such nutritional interventions into immunotherapy protocols has the potential to increase therapeutic responsiveness and long-term tumor control in patients with cancer.

View Article and Find Full Text PDF

Microbiota metabolism of intestinal amino acids impacts host nutrient homeostasis and physiology.

Cell Host Microbe

May 2024

Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA. Electronic address:

The intestine and liver are thought to metabolize dietary nutrients and regulate host nutrient homeostasis. Here, we find that the gut microbiota also reshapes the host amino acid (aa) landscape via efficiently metabolizing intestinal aa. To identify the responsible microbes/genes, we developed a metabolomics-based assay to screen 104 commensals and identified candidates that efficiently utilize aa.

View Article and Find Full Text PDF

Dietary fiber is a critical determinant of pathologic ILC2 responses and intestinal inflammation.

J Exp Med

May 2024

Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.

Innate lymphoid cells (ILCs) can promote host defense, chronic inflammation, or tissue protection and are regulated by cytokines and neuropeptides. However, their regulation by diet and microbiota-derived signals remains unclear. We show that an inulin fiber diet promotes Tph1-expressing inflammatory ILC2s (ILC2INFLAM) in the colon, which produce IL-5 but not tissue-protective amphiregulin (AREG), resulting in the accumulation of eosinophils.

View Article and Find Full Text PDF

Pas de deux of NLRP3 and ASC with CD63 on mast cell granules.

Nat Immunol

April 2024

Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.

View Article and Find Full Text PDF

Bile acids modified by the intestinal microbiota promote colorectal cancer growth by suppressing CD8 T cell effector functions.

Immunity

April 2024

Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; School of Data Science, University of Science and Technology of China, Hefei 230027, China. Electronic address:

Concentrations of the secondary bile acid, deoxycholic acid (DCA), are aberrantly elevated in colorectal cancer (CRC) patients, but the consequences remain poorly understood. Here, we screened a library of gut microbiota-derived metabolites and identified DCA as a negative regulator for CD8 T cell effector function. Mechanistically, DCA suppressed CD8 T cell responses by targeting plasma membrane Ca ATPase (PMCA) to inhibit Ca-nuclear factor of activated T cells (NFAT)2 signaling.

View Article and Find Full Text PDF