1,615 results match your criteria: "Jiangsu National Synergetic Innovation Center for Advanced Materials[Affiliation]"

Interlayer coupling in 2D heterostructures can result in a reduction of the rotation symmetry and the generation of quantum phenomena. Although these effects have been demonstrated in transition metal dichalcogenides (TMDs) with mismatched interfaces, the role of band hybridization remains unclear. In addition, the creation of flat bands at the valence band maximum (VBM) of TMDs is still an open challenge.

View Article and Find Full Text PDF

Encapsulation of biomimetic nanozymes in MOF matrices as peroxidase mimetics for sensitive detection of L-cysteine.

Anal Methods

January 2025

Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering (SCME), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China.

Article Synopsis
  • A new metal-organic framework (MOF)-encapsulated nanozyme was created to detect L-cysteine (L-Cys) using a simple color change method, enhancing both catalytic activity and stability.
  • The system works by oxidizing a colorless reagent to a blue color, which then fades back to colorless upon L-Cys addition, allowing for easy visual detection and quantitative analysis.
  • It shows excellent selectivity and resistance to interference with a low detection limit of 23.1 nm, indicating its strong potential for bioanalysis and early L-Cys diagnosis.
View Article and Find Full Text PDF

A Mitochondria-Targeted Iridium(iii) Phosphorescent Probe for Selective Detection of Hypochlorite in Living Cells.

Chem Asian J

December 2024

Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, China.

Hypochlorous acid(HClO)/hypochlorite ion (ClO) is a highly reactive oxygen species (ROS) that play a crucial role in various biological processes. In this paper, a "turn-on" phosphorescent probe (Ir-TPP) for detecting ClO in mitochondria was designed and synthesized. In solution, Ir-TPP is minimal emission due to rapid isomerization of C=N-OH as an efficient non-radiative decay process.

View Article and Find Full Text PDF

Matching P- and N-type Organic Electrochemical Transistor Performance Enables a Record High-gain Complementary Inverter.

Adv Mater

December 2024

State Key Laboratory of Polymer Physics and Chemistry & Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.

The charge transport of channel materials in n-type organic electrochemical transistors (OECTs) is greatly limited by the adverse effects of electrochemical doping, posing a long-standing puzzle for the community. Herein, an n-type conjugated polymer with glycolated side chains (n-PT3) is introduced. This polymer can adapt to electrochemical doping and create more organized nanostructures, mitigating the adverse effects of electrochemical doping.

View Article and Find Full Text PDF

Liquid/Liquid Interfacial Assembly of Poly(methyl methacrylate)-Grafted Nanoparticles into Superlattice Monolayers and Their Application as Floating Gates for High Performance Memory.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), State Key Laboratory of Materials Processing and Die & Mold Technology, and Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.

Polymer/gold nanoparticle (AuNP) composites have been utilized as floating gates to enhance the performance of memory devices. However, these devices typically exhibit a low ON/OFF drain current ratio (/) and unstable charge trapping, attributed to the poorly defined arrangement of AuNPs within the composite floating gate. To address these limitations, this study employs poly(methyl methacrylate)-grafted AuNPs (Au@PMMA) as building blocks for the fabrication of monolayered superlattice films with a highly ordered structure via liquid/liquid interfacial assembly.

View Article and Find Full Text PDF

Transition metal dichalcogenides (TMDs), such as tungsten diselenide (WSe), are expected to be used in next-generation optoelectronic devices due to their unique properties. In this study, we developed a simple method of using ethanol to scroll monolayer WSe nanosheets into nanoscrolls. These nanoscrolls have a quasi-one-dimensional structure, which enhances their electronic and optical properties.

View Article and Find Full Text PDF

Turing covalent organic framework membranes via heterogeneous nucleation synthesis for organic solvent nanofiltration.

Sci Adv

December 2024

State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China.

Although covalent organic frameworks (COFs) demonstrate notable potential for developing advanced separation membranes, contemporary COF membranes still lack controlled stacking and highly efficient sieving. Here, Turing-architecture COF membranes were constructed by engineering a reaction-diffusion assembly process via heterogeneous nucleation synthesis with tannic acid (TA). TA covalently binds with amine monomers to form a composite precursor with increased reactivity and decreased diffusivity.

View Article and Find Full Text PDF

Enhancing the Pseudocapacitive Energy Storage of Coordination Polymers by Artificially Constructed Defective Sites Anchoring Redox-Active Species.

Inorg Chem

December 2024

School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China.

Coordination polymers (CPs) have emerged as potential energy storage materials for supercapacitors due to their tunable chemical composition, structural diversity, and multielectron redox-active sites. However, besides poor cycling stability, the practical application of dense CPs in supercapacitors is generally limited by low specific capacitance and high resistance, which are caused by their low specific surface area and dense frameworks, resulting in insufficient redox reactions of metal sites and poor ion diffusion, respectively. Here, we synthesize a new dense CP {CP-1: [Ce(obb)(HCOO)]} via self-assembly of the Ce cation and 4,4'-oxidibenzoate (obb).

View Article and Find Full Text PDF

Biofilm-based immobilized fermentation of engineered Komagataella phaffii for xylanase production.

Bioresour Technol

November 2024

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.

This study presented an immobilized fermentation process of engineered Komagataella phaffii with improved biofilm-forming abilities for continuous xylanase production and provided the first insights into the molecular basis of biofilm-based immobilized fermentation of K. phaffii. Overexpression of PAS_chr2-2_0178 and PAS_FragB_0067 in K.

View Article and Find Full Text PDF

Synthesis of P(V)-Stereogenic Phosphorus Compounds via Organocatalytic Asymmetric Condensation.

J Am Chem Soc

December 2024

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.

Enantioenriched phosphorus(V)-stereogenic compounds, featuring a pentavalent phosphorus atom as the stereogenic center, are crucial in various natural products, drugs, bioactive molecules, and catalysts/ligands. While a handful of stereoselective synthetic approaches have been developed, achieving direct stereocontrol at the phosphorus atom through catalytic generation of phosphorus(V)-heteroatom bonds continues to be a formidable challenge. Here, we disclose an organocatalytic asymmetric condensation strategy that employs a novel activation mode of stable feedstock phosphinic acids by the formation of mixed phosphinic anhydride as the reactive species to facilitate further catalyst-controlled asymmetric P-O bond formations, involving a dynamic kinetic asymmetric transformation (DYKAT) process with alcohol nucleophiles via a cinchonidine-derived bifunctional catalyst.

View Article and Find Full Text PDF

CRISPR/Cas13a Trans-Cleavage and Catalytic Hairpin Assembly Cascaded Signal Amplification Powered SERS Aptasensor for Ultrasensitive Detection of Gastric Cancer-Derived Exosomes.

Anal Chem

November 2024

State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theragnostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.

Cancer-derived exosomes carry a large number of specific molecular profiles from cancer cells and have emerged as ideal biomarkers for early cancer diagnosis. Accurate detection of ultralow-abundance exosomes in complex biological samples remains a great challenge. Herein, a novel SERS aptasensor powered by cascaded signal amplification of CRISPR/Cas13a -cleavage and catalytic hairpin assembly (CHA) was proposed for ultrasensitive detection of gastric cancer-derived exosomes, which included hairpin-structured recognition aptamers (MUC1-apt), cascaded signal amplification (i.

View Article and Find Full Text PDF

Investigations of the interactions between ZnO nanorods and H with O NMR spectroscopy.

Chem Commun (Camb)

November 2024

Key Laboratory of Mesoscopic Chemistry of Ministry of Education and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

The interactions between ZnO nanorods and H at different temperatures are revealed with O solid-state NMR spectroscopy in combination with a variety of different characterization methods. These results should enable further understanding of the adsorption properties of H on ZnO nanocrystalline or related nanomaterials.

View Article and Find Full Text PDF

Peierls Distortion Induced Giant Linear Dichroism, Second-Harmonic Generation, and In-Plane Ferroelectricity in NbOBr.

Small

January 2025

Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China.

The Peierls distortion plays an essential role in governing the in-plane ferroelectricity and nonlinear optical characteristics of anisotropic niobium oxide dihalides, such as NbOCl and NbOI. Despite its significance, experimental investigation into the structural, optical, and ferroelectric properties of NbOBr has been lacking. Here, the successful fabrication of centimeter-sized, high-quality NbOBr single crystals, enabling direct observation of Peierls distortion using aberration-corrected scanning transmission electron microscopy, is reported.

View Article and Find Full Text PDF

Triggered Cascade-Activation Nanoplatform to Alleviate Hypoxia for Effective Tumor Immunotherapy Guided by NIR-II Imaging.

ACS Nano

November 2024

The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.

Hypoxia is one of the most typical features among various types of solid tumors, which creates an immunosuppressive tumor microenvironment (TME) and limits the efficacy of cancer treatment. Alleviating hypoxia becomes a key strategy to reshape hypoxic TME which improves cancer immunotherapy. However, it remains challenging to perform tumor precision therapy with controllable switches through hypoxia-activated gene editing and prodrugs to alleviate hypoxia.

View Article and Find Full Text PDF

Construction of Dual Electric Field Synergistic and Magnetic Recyclable SnFeO/ZnO Photocatalyst.

Inorg Chem

November 2024

State Key Laboratory of Organic Electronics and Information, Displays and Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.

The recombination of photoinduced carriers hampers the photocatalysis process. Construction of the heterojunction and built-in piezoelectric field boosts the separation of electrons and holes. Herein, a novel magnetic recyclable SnFeO(SFO)/ZnO composite with enhanced photocatalytic performance based on the dual electric field synergism was proposed for the first time.

View Article and Find Full Text PDF

Multilevel Stimuli-Responsive Smart "Sandwich" Label with Physical Unclonable Functions Bionic Wrinkles and Space-Selective Fluorescence Patterns.

Small

December 2024

School of Physics & The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin, 300071, P. R. China.

With the increasing popularity of the internet, it brings convenience to lives while also increases security risks. Physical Unclonable Functions (PUFs) can generate random, unclonable, and unique identifiers using their inherent physical characteristics, which have broad prospects in anti-counterfeiting. Herein, inspired by the irregular tree bark fissures and random skin wrinkles found in nature, a method for creating complex micro-wrinkles with unclonable random patterns is proposed by simply stretching hydrogels.

View Article and Find Full Text PDF

Double-Shell Encapsulation of Lead-Free Tin Halide Perovskite for Self-Powered Smart Windows.

Small

December 2024

Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu, 211816, P. R. China.

Luminescent solar concentrators (LSC) have the potential application in building integrated photovoltaic (BIPV). 0D tin-based perovskites are a promising embedding phosphor in LSC due to the large Stokes shift and high photoluminescence quantum yield. But the instability and uncontrollable crystal growth are severe limiting their successful utilization in device fabrication.

View Article and Find Full Text PDF

Controllable Synthesis of WSe-WS Lateral Heterostructures via Atomic Substitution.

ACS Nano

November 2024

Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, Hunan, China.

Article Synopsis
  • - The study focuses on using atomic substitution to create precise semiconductor heterostructures in two-dimensional (2D) materials, which is essential for advancing technology.
  • - Researchers successfully synthesized monolayer WSe-WS heterostructures with a sharp interface by applying a high-temperature chalcogen atom-exchange method, controlling the reaction through time and temperature.
  • - The methods employed included spectroscopies and microscopy to analyze the process, revealing that strain plays a significant role in transforming the materials, showcasing a new way to engineer 2D materials at the atomic level.
View Article and Find Full Text PDF

Infrared optoelectronics in twisted black phosphorus.

Nat Commun

October 2024

Department of Electronic and Electrical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, 518055, China.

Electrons and holes, fundamental charge carriers in semiconductors, dominate optical transitions and detection processes. Twisted van der Waals (vdW) heterostructures offer an effective approach to manipulate radiation, separation, and collection processes of electron-hole pairs by creating an atomically sharp interface. Here, we demonstrate that twisted interfaces in vdW layered black phosphorus (BP), an infrared semiconductor with highly anisotropic crystalline structure and properties, can significantly alter both recombination and separation processes of electron-hole pairs.

View Article and Find Full Text PDF

Amorphous-Crystalline Interface Induced Internal Electric Fields for Electrochromic Smart Window.

Adv Mater

November 2024

Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China.

Balancing optical modulation and response time is crucial for achieving high coloration efficiency in electrochromic materials. Here, internal electric fields are introduced to titanium dioxide nanosheets by constructing abundant amorphous-crystalline interfaces, ensuring large optical modulation while reducing response time and therefore improving coloration efficiency. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) reveals the presence of numerous amorphous-crystalline phase boundaries in titanium dioxide nanosheets.

View Article and Find Full Text PDF

Positively Photo-Responsive Adsorption Over Binary Copper Porphyrin Framework and Graphene Film Sorbents.

Small

December 2024

State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China.

Photo-responsive adsorption has emerged as a vibrant area because it provides a promising route to reduce the energy consumption of the traditional adsorption separation. However, the current methodology to fabricate photo-responsive sorbents is still subject to the photo-deforming molecular units. In this study, a new initiative of photo-dissociated electron-hole pairs is proposed to generate amazing adsorption activity, and prove its feasibility.

View Article and Find Full Text PDF

Dual-Action Calcium Monoaluminate Enabled Room-Temperature Curing of Inorganic Phosphate-Based High-Temperature Adhesive.

Materials (Basel)

September 2024

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China.

High-temperature adhesives find extensive application in diverse domains, encompassing repairs, production processes, and material joining. However, achieving their curing at ambient temperatures remains a formidable challenge due to the inherent requirement of elevated temperatures, typically exceeding 500 °C, for the curing reaction. To overcome this limitation, in this study, we developed a distinctive inorganic phosphate-based composite adhesive by incorporating dual-functional calcium monoaluminate (CA) into a traditional adhesive blend comprising Al(HPO) and MgO.

View Article and Find Full Text PDF

Recent Progress in the Synthesis of 3D Complex Plasmonic Intragap Nanostructures and Their Applications in Surface-Enhanced Raman Scattering.

Biosensors (Basel)

September 2024

State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.

Plasmonic intragap nanostructures (PINs) have garnered intensive attention in Raman-related analysis due to their exceptional ability to enhance light-matter interactions. Although diverse synthetic strategies have been employed to create these nanostructures, the emphasis has largely been on PINs with simple configurations, which often fall short in achieving effective near-field focusing. Three-dimensional (3D) complex PINs, distinguished by their intricate networks of internal gaps and voids, are emerging as superior structures for effective light trapping.

View Article and Find Full Text PDF

Reversible Photochromic Phenomenon of Plasmonic Metal/Semiconductor Heterostructures via Photoinduced Electron Storage.

Nano Lett

October 2024

State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

The transfer and migration process of the photogenerated charge carriers in plasmonic metal/semiconductor heterostructures not only affects their photocatalytic performance but also triggers some captivating phenomena. Here, a reversible photochromic behavior is observed on the Au/CdS heterostructures when they are investigated as photocatalysts for hydrogen production. The photochromism takes place upon excitation of the CdS component, in which the photogenerated holes are rapidly consumed by ethanol, while the electrons are transferred and stored on the Au cores, resulting in the blue shift of their localized surface plasmon resonance.

View Article and Find Full Text PDF

Harnessing Near-Infrared Light for Highly Efficient Photocatalysis.

ChemSusChem

September 2024

State Key Laboratory of Organic Electronics and Information, Displays and Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China.

Near-infrared (NIR) light, accounting for approximately 50 % of solar light, cannot directly excite photocatalytic reactions due to its lower energy, which severely restricts the photocatalytic solar energy conversion efficiency and hinders the application of photocatalysis. To overcome this dilemma, some viable strategies have been proposed to harness NIR light for enhancing photocatalytic performance based on material structure, composition, and function designs, and obvious progresses have been witnessed. In this review, the basic principles and representative advances in photocatalyst heterojunction designs (including p-n junctions, S-scheme, Z-scheme, and type-ІІ heterojunctions), photocatalyst composition and function designs (such as preparing rare earth element doped upconversion photocatalysts, rare earth upconversion photocatalytic hybrids and triplet-triplet annihilation upconversion photocatalytic composites), and photothermal-photocatalytic bifunction designs for NIR light utilization are exclusively scrutinized.

View Article and Find Full Text PDF