34 results match your criteria: "Jiangsu Industrial Technology Research Institute (JITRI)[Affiliation]"
Sci Bull (Beijing)
January 2025
Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China; Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Zhuhai MUST Science and Technology Research Institute, Macau University of Science and Technology, Macao 999078, China; Institute of Organic Optoelectronics (IOO), Jiangsu Industrial Technology Research Institute (JITRI), Suzhou 215200, China. Electronic address:
High-quality quantum dots (QDs) possess superior electroluminescent efficiencies and ultra-narrow emission linewidths are essential for realizing ultra-high definition QD light-emitting diodes (QLEDs). However, the synthesis of such QDs remains challenging. In this study, we present a facile high-temperature successive ion layer adsorption and reaction (HT-SILAR) strategy for the growth of precisely tailored ZnCdSe/ZnSe shells, and the consequent production of high-quality, large-particle, alloyed red CdZnSe/ZnCdSe/ZnSe/ZnS/CdZnS QDs.
View Article and Find Full Text PDFMater Horiz
December 2024
Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Zhuhai MUST Science and Technology Research Institute, Macau University of Science and Technology, Taipa 999078, Macau, China.
Capping layers (CPLs) are commonly employed in top-emitting organic light-emitting diodes (TEOLEDs) due to their ability to optimize color purity, enhance external light out-coupling efficiency, and improve device stability. However, the mismatch in refractive index between CPLs and thin film encapsulation (TFE) often induces light trapping. This study introduces a novel approach by combining a low refractive index material, lithium fluoride (LiF), with the traditional TFE material, silicon nitride (SiN), to form a combined CPL (LiF/SiN), resulting in improved light outcoupling and light reflection properties.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, P. R. China.
Perovskite-based tandem solar cells (PTSCs) have made remarkable achievements in recent years, and the highest certified power conversion efficiency (PCE) of 33.9% has been achieved in perovskite/silicon tandem solar cells (PSTSCs), indicating their great commercialization potential. Nevertheless, the performance of PTSCs continues to be hindered by the compromised performance of wide-bandgap perovskite solar cells (WPSCs), particularly the high deficit of WPSCs.
View Article and Find Full Text PDFMaterials (Basel)
August 2024
Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210037, China.
Gas-induced porosity is almost inevitable in additively manufactured aluminum alloys due to the evaporation of low-melting point elements (e.g., Al, Mg, and Zn) and the encapsulation of gases (e.
View Article and Find Full Text PDFSensors (Basel)
December 2023
State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haiko 570228, China.
Macular pathologies can cause significant vision loss. Optical coherence tomography (OCT) images of the retina can assist ophthalmologists in diagnosing macular diseases. Traditional deep learning networks for retinal disease classification cannot extract discriminative features under strong noise conditions in OCT images.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
July 2023
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
Background: Biofilm-immobilized continuous fermentation has the potential to enhance cellular environmental tolerance, maintain cell activity and improve production efficiency.
Results: In this study, different biofilm-forming genes (FLO5, FLO8 and FLO10) were integrated into the genome of S. cerevisiae for overexpression, while FLO5 and FLO10 gave the best results.
Nano Res
February 2023
Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China.
Unlabelled: Phosphorylation of tau at Ser (396, 404) (p-tau) is one of the earliest phosphorylation events, and plasma p-tau level appears to be a potentially promising biomarker of Alzheimer's disease (AD). The low abundance and easy degradation of p-tau in the plasma make the lateral flow assay (LFA) a suitable choice for point-of-care detection of plasma p-tau levels. Herein, based on our screening of a pair of p-tau-specific antibodies, we developed a colorimetric and surface-enhanced Raman scattering (SERS) dual-readout LFA for the rapid, highly sensitive, and robust detection of plasma p-tau levels.
View Article and Find Full Text PDFMater Horiz
July 2023
Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Groene Loper 3, 5612 AE Eindhoven, The Netherlands.
Critical temperature indicators have been extensively utilized in various fields, ranging from healthcare to food safety. However, the majority of the temperature indicators are designed for upper critical temperature monitoring, indicating when the temperature rises and exceeds a predefined limit, whereas stringently demanded low critical temperature indicators are scarcely developed. Herein, we develop a new material and system that monitor temperature decrease, , from ambient temperature to the freezing point, or even to an ultra-low temperature of -20 °C.
View Article and Find Full Text PDFFront Neurosci
October 2022
Wuhan National Laboratory for Optoelectronics, Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China.
Inverted light-sheet microscopy (ILSM) is widely employed for fast large-volume imaging of biological tissue. However, the scattering especially in an uncleared sample, and the divergent propagation of the illumination beam lead to a trade-off between axial resolution and imaging depth. Herein, we propose naturally modulated ILSM (NM-ILSM) as a technique to improve axial resolution while simultaneously maintaining the wide field-of-view (FOV), and enhancing imaging contrast background suppression.
View Article and Find Full Text PDFFront Cardiovasc Med
August 2022
Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China.
Obtaining various structures of the entire mature heart at single-cell resolution is highly desired in cardiac studies; however, effective methodologies are still lacking. Here, we propose a pipeline for labeling and imaging myocardial and vascular structures. In this pipeline, the myocardium is counterstained using fluorescent dyes and the cardiovasculature is labeled using transgenic markers.
View Article and Find Full Text PDFFront Neuroanat
May 2022
Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China.
The pontomesencephalic tegmentum, comprising the pedunculopontine nucleus and laterodorsal tegmental nucleus, is involved in various functions complex connections; however, the organizational structure of these circuits in the whole brain is not entirely clear. Here, combining viral tracing with fluorescent micro-optical sectional tomography, we comprehensively investigated the input and output circuits of two cholinergic subregions in a continuous whole-brain dataset. We found that these nuclei receive abundant input with similar spatial distributions but with different quantitative measures and acquire similar neuromodulatory afferents from the ascending reticular activation system.
View Article and Find Full Text PDFMolecules
April 2022
Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China.
In addition to mobile and TV displays, there is a trend of organic LEDs being applied in niche markets, such as microdisplays, automobile taillights, and photobiomodulation therapy. These applications mostly do not require to be flexible in form but need to have long operation lifetimes and storage lifespans. Using traditional glass encapsulation may not be able to fulfill the rigorous product specification, and a hybrid encapsulation method by combining glass and thin-film encapsulation will be the solution.
View Article and Find Full Text PDFFront Microbiol
April 2022
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.
Increasing demand for recombinant proteins necessitates efficient protein production processes. In this study, a continuous process for human epidermal growth factor (hEGF) secretion by was developed by taking advantage of biofilm formation. Genes , , and that have proved to facilitate biofilm formation and some genes , , , and potentially involved in biofilm formation were examined for their effects on hEGF secretion as well as biofilm formation.
View Article and Find Full Text PDFFront Neuroanat
December 2021
Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China.
The glutamatergic and GABAergic neurons in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) mediated diverse brain functions. However, their whole-brain neural connectivity has not been comprehensively mapped. Here we used the virus tracers to characterize the whole-brain inputs and outputs of glutamatergic and GABAergic neurons in VTA and SNc.
View Article and Find Full Text PDFFront Neuroanat
December 2021
National Institute of Biological Science, Beijing, China.
The ventral pallidum (VP) integrates reward signals to regulate cognitive, emotional, and motor processes associated with motivational salience. Previous studies have revealed that the VP projects axons to many cortical and subcortical structures. However, descriptions of the neuronal morphologies and projection patterns of the VP neurons at the single neuron level are lacking, thus hindering the understanding of the wiring diagram of the VP.
View Article and Find Full Text PDFFront Immunol
October 2021
ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal.
Successful outcome of immune checkpoint blockade in patients with solid cancers is in part associated with a high tumor mutational burden (TMB) and the recognition of private neoantigens by T-cells. The quality and quantity of target recognition is determined by the repertoire of 'neoepitope'-specific T-cell receptors (TCRs) in tumor-infiltrating lymphocytes (TIL), or peripheral T-cells. Interferon gamma (IFN-γ), produced by T-cells and other immune cells, is essential for controlling proliferation of transformed cells, induction of apoptosis and enhancing human leukocyte antigen (HLA) expression, thereby increasing immunogenicity of cancer cells.
View Article and Find Full Text PDFFront Mol Biosci
March 2021
Lab of Epigenetics and Advanced Health Technology, Space Science and Technology Institute, Shenzhen, China.
Epigenetics is an essential biological frontier linking genetics to the environment, where DNA methylation is one of the most studied epigenetic events. In recent years, through the epigenome-wide association study (EWAS), researchers have identified thousands of phenotype-related methylation sites. However, the overlaps of identified phenotype-related DNA methylation sites between various studies are often quite small, and it might be due to the fact that methylation remodeling has a certain degree of randomness within the genome.
View Article and Find Full Text PDFFront Immunol
December 2020
State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
[This corrects the article .].
View Article and Find Full Text PDFAngew Chem Int Ed Engl
March 2021
Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
Multi-layer π-stacked emitters based on spatially confined donor/acceptor/donor (D/A/D) patterns have been developed to achieve high-efficiency thermally activated delayed fluorescence (TADF). In this case, dual donor moieties and a single acceptor moiety are introduced to form two three-dimensional (3D) emitters, DM-BD1 and DM-BD2, which rely on spatial charge transfer (CT). Owing to the enforced face-to-face D/A/D pattern, effective CT interactions are realized, which lead to high photoluminescence quantum yields (PLQYs) of 94.
View Article and Find Full Text PDFAdv Mater
December 2020
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
In this work, two novel thermally activated delayed fluorescence (TADF) emitters, 2tDMG and 3tDMG, are synthesized for high-efficiency organic light-emitting diodes (OLEDs), The two emitters have a tilted face-to-face alignment of donor (D)/acceptor (A) units presenting intramolecular noncovalent interactions. The two TADF materials are deposited either by an evaporation-process or by a solution-process, both of them leading to high OLED performance. 2tDMG used as the emitter in evaporation-processed OLEDs achieves a high external quantum efficiency (EQE) of 30.
View Article and Find Full Text PDFFront Immunol
November 2020
State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
Severe COVID-19 is associated with profound lymphopenia and an elevated neutrophil to lymphocyte ratio. We applied a novel dimer avoidance multiplexed polymerase chain reaction next-generation sequencing assay to analyze T (TCR) and B cell receptor (BCR) repertoires. Surprisingly, TCR repertoires were markedly diminished during the early onset of severe disease but recovered during the convalescent stage.
View Article and Find Full Text PDFJ Am Chem Soc
October 2020
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
This work describes a strategy to produce circularly polarized thermally activated delayed fluorescence (CP-TADF). A set of two structurally similar organic emitters and are constructed, whose spiro architectures containing asymmetric donors result in chirality. Upon grafting within the spiro frameworks, the donor and acceptor are fixed proximally in a face-to-face manner.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2020
Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China.
The rational design and the fine synthesis of organic heterostructures (OHSs) are the key steps toward integrated organic optoelectronics. Herein we have demonstrated a self-assembly approach of combining a molecular-level heterostructure with a structural-level heterostructure and regulating the noncovalent intermolecular interactions for the precise construction of OHSs: a vertical type of anthracene-TCNB heterostructure and a horizontal type of benzopyrene-TCNB heterostructure. The excellent structural compatibility and the low lattice mismatch rate of ∼5.
View Article and Find Full Text PDFJ Org Chem
August 2020
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
Intramolecular spatial charge transfer (ISCT) plays a critical role in determining the optical and charge transport properties of thermally activated delayed fluorescence (TADF) materials. Herein, a new donor/acceptor-type TADF compound based on rigid dibenzothiophene sulfone (DBTS) moiety, , was designed and synthesized. Fluorene unit was used as a rigid linker to position the rigid acceptor and donor subunit in close vicinity with control over their spacing and molecular structure and to achieve high photoluminescence quantum yield (∼53%) and TADF property.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2020
Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
Derivatives based on anthryleno[1,2-b]pyrazine-2,3-dicarbonitrile (DCPA) are used as luminescent materials, to realize near-infrared (NIR) electroluminescence. By functionalizing DCPA with aromatic amine donors, two emitters named DCPA-TPA and DCPA-BBPA are designed and synthesized. Both molecules have large dipole moments owing to the strong intramolecular charge transfer interactions between the amine donors and the DCPA acceptor.
View Article and Find Full Text PDF