626 results match your criteria: "Jerzy Haber Institute of Catalysis and Surface Chemistry[Affiliation]"

Oleogels are structured materials formed by immobilizing oil within a polymer network. This study aimed to synthesize bilayer foamed oleogels using Ecogel™ as an emulsifier-a natural gelling and emulsifying agent commonly used to stabilize emulsions. Ecogel™ is multifunctional, particularly in cosmetic formulations, where it aids in creating lightweight cream gels with a cooling effect.

View Article and Find Full Text PDF

Determination of the changes in protein structure is crucial for a better understanding of their function and properties, which is highly important in identifying the causes of the disease, new drug development, and clinical applications. The Ramachandran plot, displaying the set of torsional angles, phi (Φ) and psi (Ψ), of the protein backbone, serves as a popular and convenient tool for secondary structure analysis and interpretation. However, identifying subtle changes in protein structure is often hindered in traditional Ramachandran plot, especially with the large amount of data generated by molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

Thermal CO Release Reactivity of a π-Extended Flavonol Anion.

Org Lett

December 2024

Department of Chemistry & Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah 84322-0300, United States.

The π-extended flavonol Flav-1 () undergoes reaction with KOH or KO to form , which reacts with O at ambient temperature, resulting in CO release and depside formation. Mechanistic and DFT studies support a reaction pathway involving reaction of with O on the triplet energy surface in the rate-determining step. Formation of a cyclic peroxide leads to CO extrusion.

View Article and Find Full Text PDF

Polymer-based collectors in flotation: A review.

Adv Colloid Interface Sci

January 2025

Norwegian University of Science and Technology, Department of Geoscience and Petroleum, S. P. Andersens veg 15a, 7031 Trondheim, Norway. Electronic address:

Flotation, as a beneficiation process, stands as a foundation in mineral and metal production, handling approximately 70-80 % of the world's exploited ore annually. However, numerous challenges emerge prior to beneficiation, such as the declining quality of ore, necessitating further liberation. This deterioration results in higher energy, water, and reagent consumption.

View Article and Find Full Text PDF

Biased agonism in G protein-coupled receptors is a phenomenon resulting in the selective activation of distinct intracellular signaling pathways by different agonists, which may exhibit bias toward either Gs, Gi, or arrestin-mediated pathways. This study investigates the structural basis of ligand-induced biased agonism within the context of the β-adrenergic receptor (β-AR). Atomistic molecular dynamics simulations were conducted for β-AR complexes with two stereoisomers of methoxynaphtyl fenoterol (MNFen), that is, compounds eliciting qualitatively different cellular responses.

View Article and Find Full Text PDF

Proton-conducting electrolytes with high conductivity and long-term stability, achievable at low sintering temperatures, are of paramount importance. In this study, we investigate the impact of Cu doping on the sintering mechanism, electrical performance, and stability of BaCeZrDyO (BCZD) electrolyte. The morphology, composition, structure, and chemical state of BCZD electrolytes were investigated using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

Modeling conformational changes in alginic acid oligomers induced by external forces.

Carbohydr Res

November 2024

Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; Department of Biopharmacy, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland. Electronic address:

In this study, the mechanism and nature of mechanical force-induced conformational transitions of alginate oligomers with different ratios of β-d-mannuronic acid (M unit) and α-l-guluronic acid (G unit) units were investigated. The influence of the type of glycosidic linkage in either homo- or heterooligomers on the nature of conformational transitions was also considered. For this purpose, two different theoretical methods were used: quantum mechanics (QM) at the DFT level with the EGO (Enforced Geometry Optimization) approach previously tested also for other saccharide systems, and molecular dynamics (MD) simulations within hybrid interaction potentials, which take into account both the ab initio (QM) level of theory and classical molecular mechanics (MM) force fields.

View Article and Find Full Text PDF

TiO used for photocatalytic water purification is most active in the form of nanoparticles (NP), but their use is fraught with difficulties in separation from solution or/and a tendency to agglomerate. The novel materials designed in this work circumvent these problems by immobilizing TiO NPs on the surface of exfoliated clay minerals. A series of TiO/clay mineral composites were obtained using five different clay components: the Na-, CTA-, or H-form of montmorillonite (Mt) and Na- or CTA-form of laponite (Lap).

View Article and Find Full Text PDF

Oleogels are semi-solid materials that consist primarily of liquid oil immobilized in a network of organized structural molecules, which provide stability and maintain the oil in the desired shape. Due to their structure, oleogels can stabilize large amounts of liquid, making them excellent carriers for active substances, both lipophilic and hydrophilic. This study presents the synthesis methodology and investigations of olive oil-based oleogels, which are among the healthiest and most valuable vegetable fats, rich in unsaturated fatty acids and antioxidants such as vitamin E.

View Article and Find Full Text PDF

The work presents correlations between the physicochemical properties of the carrier and the active substance and optimization of the conditions for creating an active system based on PAMAM dendrimers and doxorubicin. The study monitored the influence of the ionized form of the doxorubicin molecule on the efficiency of complex formation. The deprotonated form of doxorubicin occurs under basic conditions in the pH range of 9.

View Article and Find Full Text PDF

The ambient stability of copper oxide layers produced through thermal oxidation is a critical factor for their application in advanced photovoltaic devices. This study investigates the long-term stability of thermally grown sodium-doped copper oxides fabricated at 300 °C, 500 °C, and 700 °C. The structural, optical, and electronic properties of these oxide layers were examined after a 30-day period to understand how thermal oxidation temperature and sodium doping influence the durability and properties of copper oxide films.

View Article and Find Full Text PDF

Chlorpromazine (CPZ) is a first-generation neuroleptic with well-established antitumor and antiviral properties. Currently, numerous studies are focused on developing new methods for CPZ delivery; however, the knowledge regarding its conjugates with metal nanoparticles remains limited. The aim of this study was to prepare CPZ conjugates with gold nanoparticles (AuNPs) and evaluate their biological activity on human lymphocytes (HUT-78 and COLO 720L), as well as human (COLO 679) and murine (B16-F0) melanoma cells, in comparison to the effects induced by unconjugated CPZ molecules and AuNPs with well-defined properties.

View Article and Find Full Text PDF

This article provides a comprehensive examination of non-canonical DNA structures, particularly focusing on G-quadruplexes (G4s) and i-motifs. G-quadruplexes, four-stranded structures formed by guanine-rich sequences, are stabilized by Hoogsteen hydrogen bonds and monovalent cations like potassium. These structures exhibit diverse topologies and are implicated in critical genomic regions such as telomeres and promoter regions of oncogenes, playing significant roles in gene expression regulation, genome stability, and cellular aging.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the reactivity of two mononuclear Cu(II) chlorodiketonate complexes regarding their carbon-carbon bond cleavage when interacting with oxygen and their dependence on anions and water.
  • The bpy-ligated complex shows higher reactivity with O, requiring added chloride to enhance its reaction, while the 6-PhTPA complex does not need additional chloride.
  • Computational analysis reveals that water significantly lowers the activation barrier for oxygen interaction more than changing the anion from perchlorate to chloride, indicating distinct ligand effects on the C-C cleavage pathways in these complexes.
View Article and Find Full Text PDF

This study investigates the wall thickness and specific surface area (S) of ammonium nitrate(V) samples of varying provenance. The research focuses on both fertilizer-grade ammonium nitrate(V) and three porous prill samples obtained from different manufacturers. The samples were analyzed using tomography scanning and two distinct porosimetry methods.

View Article and Find Full Text PDF

Porphyrins on acid: kinetics of the photoinduced-protonation of tetrakis(4-carboxyphenyl)-porphyrin.

Phys Chem Chem Phys

September 2024

Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.

Free-base porphyrins can be protonated, which significantly impacts their electronic and excited state properties. While excited state dynamics are well explored for either neutral or fully protonated porphyrins, the intermediate region has not yet been explored, although their potential implications for photocatalytic reactions are evident. This study explores how partial protonation affects the nature and properties of photoexcited states of tetrakis(4-carboxyphenyl)porphyrin (TCPP) using steady-state and nanosecond transient absorption spectroscopy.

View Article and Find Full Text PDF

CO Sorption on Ti-, Zr-, and [Ti,Zr]-Pillared Montmorillonites.

Materials (Basel)

August 2024

Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland.

Article Synopsis
  • Montmorillonite is a clay mineral that can be modified by inserting oxide nanoclusters to create porous materials, showing promise for absorbing gases and catalysis.
  • This study utilized an industrial bentonite from Slovakia, rich in montmorillonite, to create Ti, Zr, and mixed [Ti,Zr] pillared clay sorbents, which were analyzed for their ability to adsorb carbon monoxide (CO).
  • The results indicated that the pillared materials absorbed significantly more CO than the raw bentonite, with the mixed [Ti,Zr] oxide variant performing the best due to its high microporosity; interactions with dry CO also altered the mineral's structural properties.
View Article and Find Full Text PDF

Poly(hydromethylsiloxane) (PHMS) was cross-linked with 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane (D) in water-in-oil High Internal Phase Emulsions to form macroporous materials known as polyHIPEs. It was shown that in the process of pyrolysis under Ar atmosphere at 520 °C, the obtained polyHIPEs were converted to ceramers with high yields (82.8-88.

View Article and Find Full Text PDF

The present study aimed to create a more sustainable and controlled delivery system based on natural biopolymer bacterial nanocellulose (BNC) and bacterial natural product actinomycin (Act), with the applicative potential in the biomedical field. In order to provide improved interaction between BNC and the active compound, and thus to modulate the release kinetics, the TEMPO oxidation of BNC support was carried out. A mix of actinomycins from bacterial fermentation (ActX) were used as natural antimicrobial agents with an established bioactivity profile and clinical use.

View Article and Find Full Text PDF

Synthetic materials alternatives are crucial for reaching sustainable development goals and waste reduction. Biomaterials and biomolecules obtained through bacterial fermentation offer a viable solution. Double-layer active UV-blocking material composed of bacterial nanocellulose as an inner layer and poly(hydroxyoctanoic acid) containing prodigiosin as an active compound was produced by layer-by-layer deposition.

View Article and Find Full Text PDF

There is currently a growing interest in health-promoting foods. The beneficial effects of food on human health are actively promoted by health professionals and nutritionists. This growing awareness is influencing the increasing range of functional foods and the pursuit of more innovative solutions.

View Article and Find Full Text PDF

The toxicity of silver nanoparticles (AgNPs) depends on their physicochemical properties. The ongoing research aims to develop effective methods for modifying AgNPs using molecules that enable control over the processes induced by nanoparticles in both normal and cancerous cells. Application of amino acid-stabilized nanoparticles appears promising, exhibiting tunable electrokinetic properties.

View Article and Find Full Text PDF

With the help of electrochemical methods, including CV and EIS, the influence of methimazole, carbimazole, and the concentration of the supporting electrolyte on the kinetics and mechanism of zinc electroreduction on a mercury electrode was compared and analyzed. Moreover, molecular dynamics simulations of zinc/carbimazole and zinc/methimazole solutions were carried out to determine the effect of drugs on the hydration sphere of Zn ions. It was shown that the electroreduction of Zn in the presence of methimazole and carbimazole occurs in two steps and the first one determines the kinetics of the entire process.

View Article and Find Full Text PDF

Specific buffer effects on the formation of BSA protein corona around amino-functionalized mesoporous silica nanoparticles.

J Colloid Interface Sci

January 2025

Department of Chemical and Geological Sciences, University of Cagliari &CSGI, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy. Electronic address:

The effect of buffer species on biomolecules and biomolecule-nanoparticle interactions is a phenomenon that has been either neglected, or not understood. Here, we study the formation of a BSA protein corona (PC) around amino-functionalized mesoporous silica nanoparticles (MSN-NH) in the presence of different buffers (Tris, BES, cacodylate, phosphate, and citrate) at the same pH (7.15) and different concentrations (10, 50, and 100 mM).

View Article and Find Full Text PDF