299 results match your criteria: "Jena University Hospital-Friedrich Schiller University Jena[Affiliation]"

Changes of deep gray matter magnetic susceptibility over 2 years in multiple sclerosis and healthy control brain.

Neuroimage Clin

January 2019

Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA; MRI Clinical and Translational Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA.

In multiple sclerosis, pathological changes of both tissue iron and myelin occur, yet these factors have not been characterized in a longitudinal fashion using the novel iron- and myelin-sensitive quantitative susceptibility mapping (QSM) MRI technique. We investigated disease-relevant tissue changes associated with myelin loss and iron accumulation in multiple sclerosis deep gray matter (DGM) over two years. One-hundred twenty (120) multiple sclerosis patients and 40 age- and sex-matched healthy controls were included in this prospective study.

View Article and Find Full Text PDF

Background: Time resolved 4D phase contrast (PC) cardiovascular magnetic resonance (CMR) in mice is challenging due to long scan times, small animal ECG-gating and the rapid blood flow and cardiac motion of small rodents. To overcome several of these technical challenges we implemented a retrospectively self-gated 4D PC radial ultra-short echo-time (UTE) acquisition scheme and assessed its performance in healthy mice by comparing the results with those obtained with an ECG-triggered 4D PC fast low angle shot (FLASH) sequence.

Methods: Cardiac 4D PC CMR images were acquired at 9.

View Article and Find Full Text PDF

So far, the therapeutic outcome of hyperthermia has shown heterogeneous responses depending on how thermal stress is applied. We studied whether extrinsic heating (EH, hot air) and intrinsic heating (magnetic heating [MH] mediated by nanoparticles) induce distinct effects on pancreatic cancer cells (PANC-1 and BxPC-3 cells). The impact of MH (100 µg magnetic nanoparticles [MNP]/mL; H=23.

View Article and Find Full Text PDF

An improved FSL-FIRST pipeline for subcortical gray matter segmentation to study abnormal brain anatomy using quantitative susceptibility mapping (QSM).

Magn Reson Imaging

June 2017

Buffalo Neuroimaging Analysis Center, Dept. of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States; MRI Molecular and Translational Imaging Center, Buffalo CTRC, State University of New York at Buffalo, Buffalo, NY, United States.

Accurate and robust segmentation of subcortical gray matter (SGM) nuclei is required in many neuroimaging applications. FMRIB's Integrated Registration and Segmentation Tool (FIRST) is one of the most popular software tools for automated subcortical segmentation based on T-weighted (T1w) images. In this work, we demonstrate that FIRST tends to produce inaccurate SGM segmentation results in the case of abnormal brain anatomy, such as present in atrophied brains, due to a poor spatial match of the subcortical structures with the training data in the MNI space as well as due to insufficient contrast of SGM structures on T1w images.

View Article and Find Full Text PDF

Temperature-based death time estimation is based either on simple phenomenological models of corpse cooling or on detailed physical heat transfer models. The latter are much more complex but allow a higher accuracy of death time estimation, as in principle, all relevant cooling mechanisms can be taken into account.Here, a complete workflow for finite element-based cooling simulation is presented.

View Article and Find Full Text PDF

The question regarding whether somatosensory inputs are processed in parallel or in series has not been clearly answered. Several studies that have applied dynamic causal modeling (DCM) to fMRI data have arrived at seemingly divergent conclusions. However, these divergent results could be explained by the hypothesis that the processing route of somatosensory information changes with time.

View Article and Find Full Text PDF

Background: The Digital X-ray Radiogrammetry (DXR) method measures the cortical bone thickness in the shafts of the metacarpals and has demonstrated its relevance in the assessment of hand bone loss caused by rheumatoid arthritis (RA). The aim of this study was to validate a novel approach of the DXR method in comparison with the original version considering patients with RA.

Method: The study includes 49 patients with verified RA.

View Article and Find Full Text PDF

Background: The pallidofugal and striatonigral fiber tracts form a functional part of the basal ganglionic neuronal networks. For deep brain stimulation, a surgical procedure applied in the treatment of Parkinson disease and dystonia, precise localization of pallidofugal pathways may be of particular clinical relevance for correct electrode positioning.

Objective: To investigate whether the pallidofugal and striatonigral pathways can be visualized with magnetic resonance imaging in vivo by exploiting their intrinsic magnetic susceptibility.

View Article and Find Full Text PDF

We report on platinum(ii) complexes with different cinnamic acid derivatives as ligands with cytotoxic activity against Cisplatin resistant ovarian cancer cell line subcultures of SKOV3 and A2780. A typical mechanism of action for platinum(ii) complexes as Cisplatin itself is binding to the DNA and inducing double-strand breaks. We examined the biological behavior of these potential drugs with 9-methylguanine using NMR spectroscopic methods and their DNA damage potential including γH2AX-foci analyses.

View Article and Find Full Text PDF

Ultrasound of the nerves is an additive diagnostic tool to evaluate polyneuropathy. Recently, the need for standardized scoring systems has widely been discussed; different scores are described so far. Therefore, 327 patients with polyneuropathy were analyzed by ultrasound in our laboratory.

View Article and Find Full Text PDF

This article investigates the processing of vestibular information by interpreting current experimental knowledge in the framework of predictive coding. We demonstrate that this theoretical framework give us insights into several important questions regarding specific properties of the vestibular system. Particularly, we discuss why the vestibular network is more spatially distributed than other sensory networks, why a mismatch in the vestibular system is more clinically disturbing than in other sensory systems, why the vestibular system is only marginally affected by most cerebral lesions, and whether there is a primary vestibular cortex.

View Article and Find Full Text PDF

Structured illumination microscopy (SIM) is a wide-field technique in fluorescence microscopy that provides fast data acquisition and two-fold resolution improvement beyond the Abbe limit. We observed a further resolution improvement using the nonlinear emission response of a fluorescent protein. We demonstrated a two-beam nonlinear structured illumination microscope by introducing only a minor change into the system used for linear SIM (LSIM).

View Article and Find Full Text PDF

Background: BoneXpert (BX) is a newly developed medical device based on digital X-ray radiogrammetry to measure human cortical bone thickness. The aim of this study was to quantify cortical bone loss of the metacarpals in patients with psoriatic arthritis (PsA) and compare these findings with other radiological scoring methods.

Methods: The study includes 104 patients with verified PsA.

View Article and Find Full Text PDF

The underlying data demonstrates that fibroblast activation protein (FAP) paves the way for fibrosarcoma cells, which require the proteolysis of the extracellular matrix (ECM) and basement membranes to intravasate from implanted subcutaneous primary tumors into blood vessels, be transported to distant organs where they extravasate from the blood vessels, reattach and proliferate to metastases. The data additionally shows that FAP, when overexpressed on fibrosarcoma cells induces their invasion and formation of spontaneous metastases in multiple organs, particularly after subcutaneous co-implantation of the FAP-expressing and wildtype fibrosarcoma. The raw and processed data presented herein is related to a research article entitled "Potential of activatable FAP-targeting immunoliposomes in intraoperative imaging of spontaneous metastases" (F.

View Article and Find Full Text PDF

Overview of quantitative susceptibility mapping.

NMR Biomed

April 2017

Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany.

Magnetic susceptibility describes the magnetizability of a material to an applied magnetic field and represents an important parameter in the field of MRI. With the recently introduced method of quantitative susceptibility mapping (QSM) and its conceptual extension to susceptibility tensor imaging (STI), the non-invasive assessment of this important physical quantity has become possible with MRI. Both methods solve the ill-posed inverse problem to determine the magnetic susceptibility from local magnetic fields.

View Article and Find Full Text PDF

A new pseudo-octahedral π-arene ruthenium(ii) piano-stool compound, containing an O,S-bidentate ligand (compound 1) and showing significant cytotoxic activity in vitro, was synthesized and characterized. In solution stability and interaction with the model protein bovine pancreatic ribonuclease (RNase A) were investigated by using UV-Vis absorption spectroscopy. Its crystal structure and that of the adduct formed upon reaction with RNase A were obtained by X-ray crystallography.

View Article and Find Full Text PDF

Cell membrane penetration and mitochondrial targeting by platinum-decorated ceria nanoparticles.

Nanoscale

July 2016

Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), 81377 Munich, Germany. and Nanosystems Initiative Munich (NIM), 80799 Munich, Germany.

In this work we investigate the interaction between endothelial cells and nanoparticles emitted by catalytic converters. Although catalyst-derived particles are recognized as growing burden added to environmental pollution, very little is known about their health impact. We use platinum-decorated ceria nanoparticles as model compounds for the actual emitted particles and focus on their fast uptake and association with mitochondria, the cell's powerhouse.

View Article and Find Full Text PDF

A comprehensive numerical analysis of background phase correction with V-SHARP.

NMR Biomed

April 2017

Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA.

Sophisticated harmonic artifact reduction for phase data (SHARP) is a method to remove background field contributions in MRI phase images, which is an essential processing step for quantitative susceptibility mapping (QSM). To perform SHARP, a spherical kernel radius and a regularization parameter need to be defined. In this study, we carried out an extensive analysis of the effect of these two parameters on the corrected phase images and on the reconstructed susceptibility maps.

View Article and Find Full Text PDF

Rare ATAD5 missense variants in breast and ovarian cancer patients.

Cancer Lett

June 2016

Clinics of Obstetrics and Gynecology, Hannover Medical School, Carl-Neuberg-Straße 1, D-30625 Hannover, Germany. Electronic address:

ATAD5/ELG1 is a protein crucially involved in replication and maintenance of genome stability. ATAD5 has recently been identified as a genomic risk locus for both breast and ovarian cancer through genome-wide association studies. We aimed to investigate the spectrum of coding ATAD5 germ-line mutations in hospital-based series of patients with triple-negative breast cancer or serous ovarian cancer compared with healthy controls.

View Article and Find Full Text PDF

During brain damage and ischemia, the cytokine interleukin-1ß is rapidly upregulated due to activation of inflammasomes. We studied whether interleukin-1ß influences cortical spreading depolarization, and whether lipopolysaccharide, often used for microglial stimulation, influences cortical spreading depolarizations. In anaesthetized rats, cortical spreading depolarizations were elicited by microinjection of KCl.

View Article and Find Full Text PDF

N-Palmitoylethanolamine Prevents the Run-down of Amplitudes in Cortical Spreading Depression Possibly Implicating Proinflammatory Cytokine Release.

Sci Rep

March 2016

Vision Research Center, Department of Ophthalmology, University of Missouri - Kansas City, School of Medicine, 2411 Holmes St., Kansas City, MO 64108, USA.

Cortical spreading depression (CSD), a wave of neuronal depolarization in the cerebral cortex following traumatic brain injury or cerebral ischemia, significantly aggravates brain damage. Here, we tested whether N-palmitoylethanolamine (PEA), a substance that effectively reduces lesion volumes and neurological deficits after ischemic stroke, influences CSD. CSD was elicited chemically in adult rats and occurrence, amplitude, duration and propagation velocity of CSD was determined prior to and for 6 hours after intraperitoneal injection of PEA.

View Article and Find Full Text PDF

Potential of activatable FAP-targeting immunoliposomes in intraoperative imaging of spontaneous metastases.

Biomaterials

May 2016

Dept. of Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Erlanger Allee 101, 07747 Jena, Germany. Electronic address:

Article Synopsis
  • Metastatic disease is the leading cause of cancer-related deaths, primarily due to late diagnoses and challenges in detecting small metastases during surgeries.
  • Fluorescence imaging, which uses fluorescent probes, offers a potential solution by providing real-time detection of metastases and tumor margins during operations.
  • This study explores the use of FAP-targeting immunoliposomes (FAP-IL) for improved imaging of metastases in mice models, showing their effective accumulation in metastatic tissues and favorable excretion profiles.
View Article and Find Full Text PDF

The accuracy of the input parameter values limits the accuracy of the output values in forensic temperature-based death time estimation (TDE) like in many scientific methods. A standard strategy to overcome this problem is to perform multiple measurements of the input parameter values, but such approaches are subject to noise accumulation and stochastic dependencies. A quantitative mathematical analysis of advantages as well as disadvantages of multiple measurements approaches (MMAs) was performed.

View Article and Find Full Text PDF

Foundations of MRI phase imaging and processing for Quantitative Susceptibility Mapping (QSM).

Z Med Phys

March 2016

Medical Physics Group, IDIR, Jena University Hospital - Friedrich Schiller University Jena, Germany; Michael Stifel Center for Data-driven and Simulation Science Jena, Friedrich Schiller University Jena, Germany.

Quantitative Susceptibility Mapping (QSM) is a novel MRI based technique that relies on estimates of the magnetic field distribution in the tissue under examination. Several sophisticated data processing steps are required to extract the magnetic field distribution from raw MRI phase measurements. The objective of this review article is to provide a general overview and to discuss several underlying assumptions and limitations of the pre-processing steps that need to be applied to MRI phase data before the final field-to-source inversion can be performed.

View Article and Find Full Text PDF

Quantitative assessment of microvasculopathy in arcAβ mice with USPIO-enhanced gradient echo MRI.

J Cereb Blood Flow Metab

September 2016

Institute for Biomedical Engineering, ETH & University of Zurich, Zurich, Switzerland Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.

Magnetic resonance imaging employing administration of iron oxide-based contrast agents is widely used to visualize cellular and molecular processes in vivo. In this study, we investigated the ability of [Formula: see text] and quantitative susceptibility mapping to quantitatively assess the accumulation of ultrasmall superparamagnetic iron oxide (USPIO) particles in the arcAβ mouse model of cerebral amyloidosis. Gradient-echo data of mouse brains were acquired at 9.

View Article and Find Full Text PDF