2,246 results match your criteria: "Jawaharlal Nehru Centre For Advanced Scientific Research[Affiliation]"

Herein, we report the synthesis and catalytic application of a new ,'-dineopentyl-1,2-phenylenediamine-based bismuthenium cation (3). 3 has been synthesized the treatment of chlorobismuthane LBiCl [L = 1,2-CH{N(CHBu)}] (2) with AgSbF, and was further used as a robust catalyst for the cyanosilylation of ketones under mild reaction conditions. Experimental studies and DFT calculations were performed to understand the mechanistic pathway.

View Article and Find Full Text PDF

Celebrating a Decade of Trailblazing Research─Collection of Highly Cited Articles Each Year from .

ACS Infect Dis

July 2024

Antimicrobial Research Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru-560064, Karnataka, India.

View Article and Find Full Text PDF

Functionalized chitosan based antibacterial hydrogel sealant for simultaneous infection eradication and tissue closure in ocular injuries.

Int J Biol Macromol

July 2024

Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India; School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India. Electronic address:

Management of infections at ocular injury often requires prolonged and high dose of antibiotic, which is associated with challenges of antibiotic resistance and bacterial biofilm formation. Tissue glues are commonly used for repairing ocular tissue defects and tissue regeneration, but they are ineffective in curing infection. There is a critical need for antibacterial ocular bio-adhesives capable of both curing infection and aiding wound closure.

View Article and Find Full Text PDF

Unlabelled: RsgA (small ribosomal subunit, 30S, GTPase), a late-stage biogenesis factor, releases RbfA from 30S-RbfA complex. Δ (deleted for ) shows a slow growth phenotype and an increased accumulation of 17S rRNA (precursor of 16S rRNA) and the ribosomal subunits. Here, we show that the rescue of the Δ strain by multicopy (IF2) is enhanced by simultaneous overexpression of initiator tRNA (i-tRNA), suggesting a role of initiation complex formation in growth rescue.

View Article and Find Full Text PDF
Article Synopsis
  • * In Drosophila, researchers found that only certain ESCRT components (Vps28 and Vp36) are essential for the development of blood cells in the larval lymph gland.
  • * The study reveals that ESCRTs play important roles in both supporting progenitor cells and regulating differentiation, highlighting their influence on cell fate and adaptability in changing environments.
View Article and Find Full Text PDF

BiTe, an archetypical tetradymite, is recognised as a thermoelectric (TE) material of potential application around room temperature. However, large energy gap (Δ) between the light and heavy conduction bands results in inferior TE performance in pristine bulk-type BiTe. Herein, we propose enhancement in TE performance of pristine-type BiTethrough purposefully manipulating defect profile and conduction band convergence mechanism.

View Article and Find Full Text PDF

In this work, we show that particles of common minerals break down spontaneously to form nanoparticles in charged water microdroplets within milliseconds. We transformed micron-sized natural minerals like quartz and ruby into 5- to 10-nanometer particles when integrated into aqueous microdroplets generated via electrospray. We deposited the droplets on a substrate, which allowed nanoparticle characterization.

View Article and Find Full Text PDF

Helical Twists in 70 Years of Nucleic Acids Research.

ACS Omega

May 2024

Alnylam Pharmaceuticals, Cambridge, Massachusetts 02142, United States.

View Article and Find Full Text PDF
Article Synopsis
  • TTK21 is a small molecule that enhances a specific enzyme's activity crucial for brain function, and when combined with a glucose-derived carbon nanosphere (CSP), it can successfully cross the blood-brain barrier and promote brain cell growth and memory retention.
  • The study shows that CSP-TTK21 can be effectively delivered through oral administration, comparing its effects to traditional intraperitoneal (IP) injection in mice.
  • Findings reveal that oral CSP-TTK21 boosts synaptic strength in the hippocampus and improves motor function and gene expression related to recovery in a spinal injury model, all without toxic effects at high doses.
View Article and Find Full Text PDF

The dengue virus is a single-stranded, positive-sense RNA virus that infects ~400 million people worldwide. Currently, there are no approved antivirals available. CRISPR-based screening methods have greatly accelerated the discovery of host factors that are essential for DENV infection and that can be targeted in host-directed antiviral interventions.

View Article and Find Full Text PDF

Dysregulated expression of cholesterol biosynthetic genes in Alzheimer's disease alters epigenomic signatures of hippocampal neurons.

Neurobiol Dis

August 2024

University of Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg F-67000, France; CNRS, UMR7364 - Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg F-67000, France. Electronic address:

Aging is the main risk factor of cognitive neurodegenerative diseases such as Alzheimer's disease, with epigenome alterations as a contributing factor. Here, we compared transcriptomic/epigenomic changes in the hippocampus, modified by aging and by tauopathy, an AD-related feature. We show that the cholesterol biosynthesis pathway is severely impaired in hippocampal neurons of tauopathic but not of aged mice pointing to vulnerability of these neurons in the disease.

View Article and Find Full Text PDF

Catheter-associated urinary tract infections (CAUTIs) pose a significant challenge in hospital settings. Current solutions available on the market involve incorporating antimicrobials and antiseptics into catheters. However, challenges such as uncontrolled release leading to undesirable toxicity, as well as the prevalence of antimicrobial resistance reduce the effectiveness of these solutions.

View Article and Find Full Text PDF

An adsorbate biased dynamic 3D porous framework for inverse CO sieving over CH.

Chem Sci

May 2024

Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India +91-80-2208-2766 +91-80-2208-2826.

Separating carbon dioxide (CO) from acetylene (CH) is one of the most critical and complex industrial separations due to similarities in physicochemical properties and molecular dimensions. Herein, we report a novel Ni-based three-dimensional framework {[Ni(μ-OH)(μ-OH)(1,4-ndc)](3HO)} (1,4-ndc = 1,4-naphthalenedicarboxylate) with a one-dimensional pore channel (3.05 × 3.

View Article and Find Full Text PDF

SbTe, a binary chalcogenide-based 3D topological insulator, attracts significant attention for its exceptional thermoelectric performance. We report the vibrational properties of magnetically doped SbTethermoelectric material. Ni doping induces defect/disorder in the system and plays a positive role in engineering the thermoelectric properties through tuning the vibrational phonon modes.

View Article and Find Full Text PDF

MutT proteins belong to the Nudix hydrolase superfamily that includes a diverse group of Mg requiring enzymes. These proteins use a generalized substrate, nucleoside diphosphate linked to a chemical group X (NDP-X), to produce nucleoside monophosphate (NMP) and the moiety X linked with phosphate (XP). E.

View Article and Find Full Text PDF

Graphene Quantum Dots as Hole Extraction and Transfer Layer Empowering Solar Water Splitting of Catalyst-Coupled Zinc Ferrite Nanorods.

ACS Appl Mater Interfaces

June 2024

Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector-III, Salt Lake, Kolkata, West Bengal 700 106, India.

Despite the narrow band gap energy, the performance of zinc ferrite (ZnFeO) as a photoharvester for solar-driven water splitting is significantly hindered due to its sluggish charge transfer and severe charge recombination. This work reports the fabrication of a hybrid nanostructured hydrogenated ZnFeO (ZFO) photoanode with enhanced photoelectrochemical water-oxidation activity through coupling N-doped graphene quantum dots (GQDs) as a hole transfer layer and Co-Pi as a catalyst. The GQDs not only reduce the surface-mediated nonradiative electron-hole pair recombination but also induce a built-in interfacial electric field leading to a favorable band alignment at the ZFO/GQDs interface, helping rapid photogenerated hole separation and serving as a conducting hole transfer highway, improve the hole transportation into the Co-Pi catalyst for enhanced water oxidation reaction kinetics.

View Article and Find Full Text PDF

Hybrid layered double perovskites (HLDPs), representing the two-dimensional manifestation of halide double perovskites, have elicited considerable interest owing to their intricate chemical bonding hierarchy and structural diversity. This intensified interest stems from the diverse options available for selecting alternating octahedral coordinated trivalent [M(III)] and monovalent metal centers [M(I)], along with the distinctive nature of the cationic organic amine located between the layers. Here, we have synthesized three new compounds with general formula (R'/R'')M(III)M(I)Cl; where R'=CHNH (i.

View Article and Find Full Text PDF

Modern technology demands miniaturization of electronic components to build small, light, and portable devices. Hence, discovery and synthesis of new non-toxic, low cost, ultra-thin ferroelectric materials having potential applications in various electronic and optoelectronic devices are of paramount importance. However, achieving room-temperature ferroelectricity in two dimensional (2D) ultra-thin systems remains a major challenge as conventional three-dimensional ferroelectric materials lose their ferroelectricity when the thickness is brought down below a critical value owing to the depolarization field.

View Article and Find Full Text PDF

Considering the rapidly increasing population, the development of new resources, skills, and devices that can provide safe potable water and clean energy remains one of the vital research topics for the scientific community. Owing to this, scientific community discovered such material for tackle this issue of environment benign, the new materials with graphene functionalized derivatives show significant advantages for application in multifunctional catalysis and energy storage systems. Herein, we highlight the recent methods reported for the preparation of graphene-based materials by focusing on the following aspects: (i) transformation of graphite/graphite oxide into graphene/graphene oxide exfoliation and reduction; (ii) bioinspired fabrication or modification of graphene with various metal oxides and its applications in photocatalysis and storage systems.

View Article and Find Full Text PDF

Nature employs sophisticated mechanisms to precisely regulate self-assembly and functions within biological systems, exemplified by the formation of cytoskeletal filaments. Various enzymatic reactions and auxiliary proteins couple with the self-assembly process, meticulously regulating the length and functions of resulting macromolecular structures. In this context, we present a bioinspired, reaction-coupled approach for the controlled supramolecular polymerization in synthetic systems.

View Article and Find Full Text PDF

The study of host-pathogen interaction often requires interrogating the protein-protein interactions and examining post-translational modifications of the proteins. Traditional protein detection strategies are limited in their sensitivity, specificity, and multiplexing capabilities. The Proximity Ligation Assay (PLA), a versatile and powerful molecular technique, can overcome these limitations.

View Article and Find Full Text PDF

Hidden structures: a driving factor to achieve low thermal conductivity and high thermoelectric performance.

Chem Soc Rev

June 2024

New Chemistry Unit, School of Advanced Materials and International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore 560064, India.

The long-range periodic atomic arrangement or the lack thereof in solids typically dictates the magnitude and temperature dependence of their lattice thermal conductivity (). Compared to crystalline materials, glasses exhibit a much-suppressed across all temperatures as the phonon mean free path reaches parity with the interatomic distances therein. While the occurrence of such glass-like thermal transport in crystalline solids captivates the scientific community with its fundamental inquiry, it also holds the potential for profoundly impacting the field of thermoelectric energy conversion.

View Article and Find Full Text PDF

Noble-metal-based chalcogenide materials recently gained massive attention in the field of thermoelectrics. In most cases, materials are synthesized using (i) high-temperature solid-state reactions or (ii) soft chemical methods where temperature requirements are lower than those of solid-state reactions (generally below 400 °C). Herein, we present a simple, surfactant-free, room-temperature, and energy-efficient synthesis of AgCuS nanocrystals.

View Article and Find Full Text PDF

Dynamic supramolecular assemblies, driven by noncovalent interactions, pervade the biological realm. In the synthetic domain, their counterparts, supramolecular polymers, endowed with remarkable self-repair and adaptive traits, are often realized through bioinspired designs. Recently, controlled supramolecular polymerization strategies have emerged, drawing inspiration from protein self-assembly.

View Article and Find Full Text PDF

Microwave Assisted Fast Synthesis of a Donor-Acceptor COF Towards Photooxidative Amidation Catalysis.

Angew Chem Int Ed Engl

July 2024

Molecular Materials Laboratory, Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore, 560064, India.

The synthesis of covalent organic frameworks (COFs) at bulk scale require robust, straightforward, and cost-effective techniques. However, the traditional solvothermal synthetic methods of COFs suffer low scalability as well as requirement of sensitive reaction environment and multiday reaction time (2-10 days) which greatly restricts their practical application. Here, we report microwave assisted rapid and optimized synthesis of a donor-acceptor (D-A) based highly crystalline COF, TzPm-COF in second (10 sec) to minute (10 min) time scale.

View Article and Find Full Text PDF