2 results match your criteria: "Japan. obika@phs.osaka-u.ac.jp and National Institutes of Biomedical Innovation[Affiliation]"

Synthesis and properties of GuNA purine/pyrimidine nucleosides and oligonucleotides.

Org Biomol Chem

December 2020

Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan. and National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan.

We recently designed guanidine-bridged nucleic acids (GuNA), and GuNA bearing a thymine (T) nucleobase was synthesized and successfully incorporated into oligonucleotides. The GuNA-T-modified oligonucleotides possessed high duplex-forming ability towards their complementary single-stranded RNAs and were highly stable against 3'-exonuclease. Therefore, GuNA is a promissing artificial nucleic acid for therapeutic antisense oligonucleotides.

View Article and Find Full Text PDF

Wavelength-selective light-triggered strand exchange reaction.

Org Biomol Chem

February 2016

Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan. and National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan.

We prepared an oligodeoxynucleotide (ODN) bearing two 4-hydroxy-2-mercaptobenzimidazole nucleobase analogues (SB(NV) and SB(NB)) modified with different photolabile groups. This ODN enabled a light-triggered strand exchange reaction in a wavelength-selective manner.

View Article and Find Full Text PDF